Skip to main content

Abstract

Glomerular basement membrane (GBM) plays a critical role in preventing serum protein leakage into Bowman’s space. By using “in vivo cryotechnique (IVCT),” the periodic acid-Schiff (PAS) fluorescence emission was well-represented GBM instead of immunostaining of collagen type IV, which was difficult to observe without the microwave treatment in specimens. Serum protein distribution in living mouse glomeruli was better visualized with IVCT compared with other conventional methods. Under normal condition, immunoreaction products of albumin and immunoglobulin G heavy and light chains (IgG (H+L)) were localized within glomerular capillary loops (GCL) but not colocalized with the PAS fluorescence emission of the GBM. Under heart-arrest condition and with quick-freezing of resected tissues, albumin, IgG (H+L), immunoglobulin kappa light chain, and IgG1 heavy chain (IgG1) were immunolocalized within GCL and mesangial areas, but only albumin and kappa light chain were additionally immunolocalized in Bowman’s space, indicating their passage through GBM. Under acute hypertensive condition, both albumin and kappa light chain, but not IgG1, were clearly immunolocalized along GBM and in Bowman’s space, indicating their increased passage through GBM. The overlapped areas of PAS fluorescence emission and albumin or kappa light chain were appeared to be larger with quick-freezing and under the heart-arrest or acute hypertensive condition than under normal circulation, whereas those of PAS emission and IgG1 were not different among those conditions. These results suggest that PAS fluorescence emission combined with IVCT allowed us to investigate the serum proteins passing through GBM induced by hemodynamic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olivetti G, Kithier K, Giacomelli F, Wiener J (1981) Glomerular permeability to endogenous proteins in the rat: effects of acute hypertension. Lab Invest 44:127–137

    CAS  PubMed  Google Scholar 

  2. Remuzzi G, Bertani T (1998) Pathophysiology of progressive nephropathies. N Engl J Med 339:1448–1456

    Article  CAS  PubMed  Google Scholar 

  3. Reiser J, Kriz W, Kretzler M, Mundel P (2000) The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol 11:1–8

    CAS  PubMed  Google Scholar 

  4. Rico M, Mukherjee A, Konieczkowski M, Bruggeman LA, Miller RT, Khan S, Schelling JR, Sedor JR (2005) WT1-interacting protein and ZO-1 translocate into podocyte nuclei after puromycin aminonucleoside treatment. Am J Physiol Renal Physiol 289:F431–F441

    Article  CAS  PubMed  Google Scholar 

  5. Fujigaki Y, Nagase M, Kobayasi S, Hidaka S, Shimomura M, Hishida A (1993) Intra-GBM site of the functional filtration barrier for endogenous proteins in rats. Kidney Int 43:567–574

    Article  CAS  PubMed  Google Scholar 

  6. Ryan GB, Karnovsky MJ (1976) Distribution of endogenous albumin in the rat glomerulus: role of hemodynamic factors in glomerular barrier function. Kidney Int 9:36–45

    Article  CAS  PubMed  Google Scholar 

  7. Ohno S, Terada N, Fujii Y, Ueda H, Takayama I (1996) Dynamic structure of glomerular capillary loop as revealed by an in vivo cryotechnique. Virchows Arch 427:519–527

    Article  CAS  PubMed  Google Scholar 

  8. Ohno N, Terada N, Fujii Y, Baba T, Ohno S (2004) “In vivo cryotechnique” for paradigm shift to “living morphology” of animal organs. Biomed Rev 15:1–19

    Article  Google Scholar 

  9. Terada N, Ohno N, Li Z, Fujii Y, Baba T, Ohno S (2006) Application of in vivo cryotechnique to the examination of cells and tissues in living animal organs. Histol Histopathol 21:265–272

    CAS  PubMed  Google Scholar 

  10. Bridgman PC, Dailey ME (1989) The organization of myosin and actin in rapid frozen nerve growth cones. J Cell Biol 108:95–109

    Article  CAS  PubMed  Google Scholar 

  11. Ohno N, Terada N, Murata S, Katoh R, Ohno S (2005) Application of cryotechniques with freeze-substitution for the immunohistochemical demonstration of intranuclear pCREB and chromosome territory. J Histochem Cytochem 53:55–62

    Article  CAS  PubMed  Google Scholar 

  12. Sorokin LM, Pausch F, Durbeej M, Ekblom P (1997) Differential expression of five laminin alpha (1-5) chains in developing and adult mouse kidney. Dev Dyn 210:446–462

    Article  CAS  PubMed  Google Scholar 

  13. Conde-Knape K (2001) Heparan sulfate proteoglycans in experimental models of diabetes: a role for perlecan in diabetes complications. Diabetes Metab Res Rev 17:412–421

    Article  CAS  PubMed  Google Scholar 

  14. van Vliet AI, van Alderwegen IE, Baelde HJ, de Heer E, Bruijn JA (2002) Fibronectin accumulation in glomerulosclerotic lesions: self-assembly sites and the heparin II binding domain. Kidney Int 61:481–489

    Article  PubMed  Google Scholar 

  15. Chow FY, Nikolic-Paterson DJ, Atkins RC, Tesch GH (2004) Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis. Nephrol Dial Transplant 19:2987–2996

    Article  CAS  PubMed  Google Scholar 

  16. Nagato Y, Mitsui T, Kushida T, Kushida H (1985) Localization of periodate-Schiff reactive glycosaminoglycans in semi-thin sections embedded in GMA-Quetol 523-MMA–application of a method for correlative light and electron microscopy of identical sites. Tokai J Exp Clin Med 10:37–46

    CAS  PubMed  Google Scholar 

  17. Schnabel E, Anderson JM, Farquhar MG (1990) The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J Cell Biol 111:1255–1263

    Article  CAS  PubMed  Google Scholar 

  18. Angeles G, Owens SA, Ewers FW (2004) Fluorescence shell: a novel view of sclereid morphology with the Confocal Laser Scanning Microscope. Microsc Res Tech 63:282–288

    Article  PubMed  Google Scholar 

  19. Evans CM, Williams OW, Tuvim MJ, Nigam R, Mixides GP, Blackburn MR, DeMayo FJ, Burns AR, Smith C, Reynolds SD, Stripp BR, Dickey BF (2004) Mucin is produced by clara cells in the proximal airways of antigen-challenged mice. Am J Respir Cell Mol Biol 31:382–394

    Article  CAS  PubMed  Google Scholar 

  20. Schaart G, Hesselink RP, Keizer HA, van Kranenburg G, Drost MR, Hesselink MK (2004) A modified PAS stain combined with immunofluorescence for quantitative analyses of glycogen in muscle sections. Histochem Cell Biol 122:161–169

    Article  CAS  PubMed  Google Scholar 

  21. Farquhar MG, Wissig SL, Palade GE (1961) Glomerular permeability. I. Ferritin transfer across the normal glomerular capillary wall. J Exp Med 113:47–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Graham RC Jr, Karnovsky MJ (1966) Glomerular permeability. Ultrastructural cytochemical studies using peroxidases as protein tracers. J Exp Med 124:1123–1134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Mundel P, Shankland SJ (2002) Podocyte biology and response to injury. J Am Soc Nephrol 13:3005–3015

    Article  PubMed  Google Scholar 

  24. Batuman V, Dreisbach AW, Cyran J (1990) Light-chain binding sites on renal brush-border membranes. Am J Physiol 258:F1259–F1265

    CAS  PubMed  Google Scholar 

  25. Batuman V, Guan S (1997) Receptor-mediated endocytosis of immunoglobulin light chains by renal proximal tubule cells. Am J Physiol 272:F521–F530

    CAS  PubMed  Google Scholar 

  26. Birn H, Fyfe JC, Jacobsen C, Mounier F, Verroust PJ, Orskov H, Willnow TE, Moestrup SK, Christensen EI (2000) Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. J Clin Invest 105:1353–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Brunskill NJ (2000) Albumin and proximal tubular cells–beyond endocytosis. Nephrol Dial Transplant 15:1732–1734

    Article  CAS  PubMed  Google Scholar 

  28. Andrews PM, Bates SB (1985) Dose-dependent movement of cationic molecules across the glomerular wall. Anat Rec 212:223–231

    Article  CAS  PubMed  Google Scholar 

  29. Imai H, Hamai K, Komatsuda A, Ohtani H, Miura AB (1997) IgG subclasses in patients with membranoproliferative glomerulonephritis, membranous nephropathy, and lupus nephritis. Kidney Int 51:270–276

    Article  CAS  PubMed  Google Scholar 

  30. Bijl M, Dijstelbloem HM, Oost WW, Bootsma H, Derksen RH, Aten J, Limburg PC, Kallenberg CG (2002) IgG subclass distribution of autoantibodies differs between renal and extra-renal relapses in patients with systemic lupus erythematosus. Rheumatology (Oxford) 41:62–67

    Article  CAS  Google Scholar 

  31. Kanwar YS (1984) Biophysiology of glomerular filtration and proteinuria. Lab Invest 51:7–21

    CAS  PubMed  Google Scholar 

  32. Zea-Aragon Z, Terada N, Ohno N, Fujii Y, Baba T, Ohno S (2004) Effects of anoxia on serum immunoglobulin and albumin leakage through blood-brain barrier in mouse cerebellum as revealed by cryotechniques. J Neurosci Methods 138:89–95

    Article  CAS  PubMed  Google Scholar 

  33. Griffith LD, Bulger RE, Trump BF (1967) The ultrastructure of the functioning kidney. Lab Invest 16:220–246

    CAS  PubMed  Google Scholar 

  34. Pagtalunan ME, Olson JL, Tilney NL, Meyer TW (1999) Late consequences of acute ischemic injury to a solitary kidney. J Am Soc Nephrol 10:366–373

    CAS  PubMed  Google Scholar 

  35. Sutton TA, Mang HE, Campos SB, Sandoval RM, Yoder MC, Molitoris BA (2003) Injury of the renal microvascular endothelium alters barrier function after ischemia. Am J Physiol Renal Physiol 285:F191–F198

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilong Li M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Li, Z., Terada, N., Ohno, S. (2016). Application of Periodic Acid-Schiff Fluorescence Emission for Immunohistochemistry of Living Mouse Renal Glomeruli. In: Ohno, S., Ohno, N., Terada, N. (eds) In Vivo Cryotechnique in Biomedical Research and Application for Bioimaging of Living Animal Organs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55723-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55723-4_22

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55722-7

  • Online ISBN: 978-4-431-55723-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics