Skip to main content

Fli1

  • Chapter
  • First Online:
Systemic Sclerosis
  • 942 Accesses

Abstract

Systemic sclerosis (SSc) is a multifactorial connective tissue disease caused by the complex interplay between genetic factors and environmental influences. Fli1, a member of Ets transcription factor family, is constitutively suppressed in various cell types in the lesional and non-lesional skin of SSc patients at least partially by an epigenetic mechanism. Therefore, Fli1 deficiency is a potential predisposing factor of SSc reflecting environmental influences. Consistent with this notion, Fli1 +/− mice reproduce SSc-like phenotypes in dermal fibroblasts and dermal microvascular endothelial cells at molecular levels. Importantly, bleomycin, a potential environmental factor of SSc, induces more prominent SSc-like phenotypes in various cell types of Fli1 +/− mice than in those of wild-type mice. Furthermore, endothelial cell-specific Fli1 knockout mice reproduce the functional and structural vascular abnormalities characteristic of SSc vasculopathy. Moreover, double heterozygous mice for Fli1 and Klf5, another transcription factor epigenetically suppressed in SSc dermal fibroblasts, spontaneously develop three cardinal features of SSc including immune abnormalities, vasculopathy, and tissue fibrosis of the skin and lung. Thus, Fli1 deficiency is a key feature in the pathogenesis of SSc. On the other hand, accumulating evidence has suggested that Fli1 is a potential therapeutic target of SSc because Fli1 expression can be reversed by bosentan, a dual endothelin receptor antagonist with a preventive effect on digital ulcers relevant to SSc. Therefore, the studies on the role of Fli1 in SSc provide us new clues to further understand the pathogenesis of SSc and to develop a new therapeutic strategy for this devastating and incurable disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnett FC, Cho M, Chatterjee S, Aguilar MB, Reveille JD, Mayes MD. Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma) in three United States cohorts. Arthritis Rheum. 2001;44(6):1359–62.

    Article  CAS  PubMed  Google Scholar 

  2. Feghali-Bostwick C, Medsger TA, Wright TM. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum. 2003;48(7):1956–63.

    Article  PubMed  Google Scholar 

  3. Broen JC, Radstake TR, Rossato M. The role of genetics and epigenetics in the pathogenesis of systemic sclerosis. Nat Rev Rheumatol. 2014;10(11):671–81.

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Fan PS, Kahaleh B. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum. 2006;54(7):2271–9.

    Article  CAS  PubMed  Google Scholar 

  5. Noda S, Asano Y, Nishimura S, Taniguchi T, Fujiu K, Manabe I, et al. Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nat Commun. 2014;5:5797.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Wang Y, Kahaleh B. Epigenetic repression of bone morphogenetic protein receptor II expression in scleroderma. J Cell Mol Med. 2013;17(10):1291–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Matouk CC, Marsden PA. Epigenetic regulation of vascular endothelial gene expression. Circ Res. 2008;102(8):873–87.

    Article  CAS  PubMed  Google Scholar 

  8. Hu B, Gharaee-Kermani M, Wu Z, Phan SH. Essential role of MeCP2 in the regulation of myofibroblast differentiation during pulmonary fibrosis. Am J Pathol. 2011;178(4):1500–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lian X, Xiao R, Hu X, Kanekura T, Jiang H, Li Y, et al. DNA demethylation of CD40l in CD4+ T cells from women with systemic sclerosis: a possible explanation for female susceptibility. Arthritis Rheum. 2012;64(7):2338–45.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang H, Xiao R, Lian X, Kanekura T, Luo Y, Yin Y, et al. Demethylation of TNFSF7 contributes to CD70 overexpression in CD4+ T cells from patients with systemic sclerosis. Clin Immunol. 2012;143(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Shu Y, Xiao Y, Wang Q, Kanekura T, Li Y, et al. Hypomethylation and overexpression of ITGAL (CD11a) in CD4(+) T cells in systemic sclerosis. Clin Epigenetics. 2014;6(1):25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Altorok N, Tsou PS, Coit P, Khanna D, Sawalha AH. Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann Rheum Dis. 2015;74(8):1612–20.

    Article  CAS  PubMed  Google Scholar 

  13. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359(6391):162–5.

    Article  CAS  PubMed  Google Scholar 

  14. Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A, et al. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity. 2000;13(2):167–77.

    Article  CAS  PubMed  Google Scholar 

  15. Raslova H, Komura E, Le Couédic JP, Larbret F, Debili N, Feunteun J, et al. FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Invest. 2004;114(1):77–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Carpinelli MR, Kruse EA, Arhatari BD, Debrincat MA, Ogier JM, Bories J, et al. Haploinsufficiency for Ets1 and Fli1 disrupts auditory and nasal development in mice and models aspects of Jacobsen syndrome. Am J Pathol. 2015;185(7):1867–76.

    Article  CAS  PubMed  Google Scholar 

  17. Hollenhorst PC, Jones DA, Graves BJ. Expression profiles frame the promoter specificity dilemma of the ETS family of transcription factors. Nucleic Acids Res. 2004;32(18):5693–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Czuwara-Ladykowska J, Shirasaki F, Jackers P, Watson DK, Trojanowska M. Fli-1 inhibits collagen type I production in dermal fibroblasts via an Sp1-dependent pathway. J Biol Chem. 2001;276(24):20839–48.

    Article  CAS  PubMed  Google Scholar 

  19. Kubo M, Czuwara-Ladykowska J, Moussa O, Markiewicz M, Smith E, Silver RM, et al. Persistent down-regulation of Fli1, a suppressor of collagen transcription, in fibrotic scleroderma skin. Am J Pathol. 2003;163(2):571–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Masuya M, Moussa O, Abe T, Deguchi T, Higuchi T, Ebihara Y, et al. Dysregulation of granulocyte, erythrocyte, and NK cell lineages in Fli-1 gene-targeted mice. Blood. 2005;105(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  21. Mao X, Miesfeldt S, Yang H, Leiden JM, Thompson CB. The FLI-1 and chimeric EWS-FLI-1 oncoproteins display similar DNA binding specificities. J Biol Chem. 1994;269(27):18216–22.

    CAS  PubMed  Google Scholar 

  22. Zhang XK, Watson DK. The FLI-1 transcription factor is a short-lived phosphoprotein in T cells. J Biochem. 2005;137(3):297–302.

    Article  CAS  PubMed  Google Scholar 

  23. Bradshaw S, Zheng WJ, Tsoi LC, Gilkeson G, Zhang XK. A role for Fli-1 in B cell proliferation: implications for SLE pathogenesis. Clin Immunol. 2008;129(1):19–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhang L, Eddy A, Teng YT, Fritzler M, Kluppel M, Melet F, et al. An immunological renal disease in transgenic mice that overexpress Fli-1, a member of the ets family of transcription factor genes. Mol Cell Biol. 1995;15(12):6961–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zhang XK, Gallant S, Molano I, Moussa OM, Ruiz P, Spyropoulos DD, et al. Decreased expression of the Ets family transcription factor Fli-1 markedly prolongs survival and significantly reduces renal disease in MRL/lpr mice. J Immunol. 2004;173(10):6481–9.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang XK, Moussa O, LaRue A, Bradshaw S, Molano I, Spyropoulos DD, et al. The transcription factor Fli-1 modulates marginal zone and follicular B cell development in mice. J Immunol. 2008;181(3):1644–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sarrazin S, Bonod-Bidaud C, Remy P, Mehlen P, Morle F. Caspase cleavage of the transcription factor FLI-1 during preB leukemic cell death. Biochim Biophys Acta. 2002;1592(2):123–7.

    Article  CAS  PubMed  Google Scholar 

  28. Spyropoulos DD, Pharr PN, Lavenburg KR, Jackers P, Papas TS, Ogawa M, et al. Hemorrhage, impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol Cell Biol. 2000;20(15):5643–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Liu F, Walmsley M, Rodaway A, Patient R. Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr Biol. 2008;18(16):1234–40.

    Article  CAS  PubMed  Google Scholar 

  30. Shirasaki F, Makhluf HA, LeRoy C, Watson DK, Trojanowska M. Ets transcription factors cooperate with Sp1 to activate the human tenascin-C promoter. Oncogene. 1999;18(54):7755–64.

    Article  CAS  PubMed  Google Scholar 

  31. Asano Y, Trojanowska M. Fli1 represses transcription of the human α2(I) collagen gene by recruitment of the HDAC1/p300 complex. PLoS ONE. 2013;8(9):e74930.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Asano Y, Czuwara J, Trojanowska M. Transforming growth factor-beta regulates DNA binding activity of transcription factor Fli1 by p300/CREB-binding protein-associated factor-dependent acetylation. J Biol Chem. 2007;282(48):34672–83.

    Article  CAS  PubMed  Google Scholar 

  33. Asano Y, Trojanowska M. Phosphorylation of Fli1 at threonine 312 by protein kinase C delta promotes its interaction with p300/CREB-binding protein-associated factor and subsequent acetylation in response to transforming growth factor beta. Mol Cell Biol. 2009;29(7):1882–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Asano Y, Markiewicz M, Kubo M, Szalai G, Watson DK, Trojanowska M. Transcription factor Fli1 regulates collagen fibrillogenesis in mouse skin. Mol Cell Biol. 2009;29(2):425–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Simonsson M, Kanduri M, Grönroos E, Heldin CH, Ericsson J. The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J Biol Chem. 2006;281(52):39870–80.

    Article  CAS  PubMed  Google Scholar 

  36. Inoue Y, Itoh Y, Abe K, Okamoto T, Daitoku H, Fukamizu A, et al. Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene. 2007;26(4):500–8.

    Article  CAS  PubMed  Google Scholar 

  37. Itoh S, Ericsson J, Nishikawa J, Heldin CH, ten Dijke P. The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Nucleic Acids Res. 2000;28(21):4291–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Jimenez SA, Gaidarova S, Saitta B, Sandorfi N, Herrich DJ, Rosenbloom JC, et al. Role of protein kinase C-delta in the regulation of collagen gene expression in scleroderma fibroblasts. J Clin Invest. 2001;108(9):1395–403.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lagares D, García-Fernández RA, Jiménez CL, Magán-Marchal N, Busnadiego O, Lamas S, et al. Endothelin 1 contributes to the effect of transforming growth factor beta1 on wound repair and skin fibrosis. Arthritis Rheum. 2010;62(3):878–89.

    Article  CAS  PubMed  Google Scholar 

  40. Akamata K, Asano Y, Yamashita T, Noda S, Taniguchi T, Takahashi T, et al. Endothelin receptor blockade ameliorates vascular fragility in endothelial cell-specific fli-1-knockout mice by increasing fli-1 DNA binding ability. Arthritis Rheumatol. 2015;67(5):1335–44.

    Article  CAS  PubMed  Google Scholar 

  41. Akamata K, Asano Y, Aozasa N, Noda S, Taniguchi T, Takahashi T, et al. Bosentan reverses the pro-fibrotic phenotype of systemic sclerosis dermal fibroblasts via increasing DNA binding ability of transcription factor Fli1. Arthritis Res Ther. 2014;16(2):R86.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Taniguchi T, Asano Y, Akamata K, Noda S, Takahashi T, Ichimura Y, et al. Fibrosis, vascular activation, and immune abnormalities resembling systemic sclerosis in bleomycin-treated fli-1-haploinsufficient mice. Arthritis Rheumatol. 2015;67(2):517–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Braun-Falco O, Rupec M. Collagen fibrils of the scleroderma in ultra-thin skin sections. Nature. 1964;202:708–9.

    Article  CAS  PubMed  Google Scholar 

  44. Fleischmajer R, Damiano V, Nedwich A. Alteration of subcutaneous tissue in systemic scleroderma. Arch Dermatol. 1972;105(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  45. Fleischmajer R, Gay S, Meigel WN, Perlish JS. Collagen in the cellular and fibrotic stages of scleroderma. Arthritis Rheum. 1978;21(4):418–28.

    Article  CAS  PubMed  Google Scholar 

  46. Sakakibara N, Sugano S, Morita A. Ultrastructural changes induced in cutaneous collagen by ultraviolet-A1 and psoralen plus ultraviolet A therapy in systemic sclerosis. J Dermatol. 2008;35(2):63–9.

    Article  PubMed  Google Scholar 

  47. Asano Y, Stawski L, Hant F, Highland K, Silver R, Szalai G, et al. Endothelial Fli1 deficiency impairs vascular homeostasis: a role in scleroderma vasculopathy. Am J Pathol. 2010;176(4):1983–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Noda S, Asano Y, Akamata K, Aozasa N, Taniguchi T, Takahashi T, et al. A possible contribution of altered cathepsin B expression to the development of skin sclerosis and vasculopathy in systemic sclerosis. PLoS ONE. 2012;7(2):e32272.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Noda S, Asano Y, Takahashi T, Akamata K, Aozasa N, Taniguchi T, et al. Decreased cathepsin V expression due to Fli1 deficiency contributes to the development of dermal fibrosis and proliferative vasculopathy in systemic sclerosis. Rheumatology (Oxford). 2013;52(5):790–9.

    Article  CAS  Google Scholar 

  50. Ichimura Y, Asano Y, Akamata K, Takahashi T, Noda S, Taniguchi T, et al. Fli1 deficiency contributes to the suppression of endothelial CXCL5 expression in systemic sclerosis. Arch Dermatol Res. 2014;306(4):331–8.

    Article  CAS  PubMed  Google Scholar 

  51. Saigusa R, Asano Y, Taniguchi T, Yamashita T, Takahashi T, Ichimura Y, et al. A possible contribution of endothelial CCN1 downregulation due to Fli1 deficiency to the development of digital ulcers in systemic sclerosis. Exp Dermatol. 2015;24(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  52. Akamata K, Asano Y, Taniguchi T, Yamashita T, Saigusa R, Nakamura K, et al. Increased expression of chemerin in endothelial cells due to Fli1 deficiency may contribute to the development of digital ulcers in systemic sclerosis. Rheumatology (Oxford). 2015;54(7):1308–16.

    Article  Google Scholar 

  53. Takahashi T, Asano Y, Noda S, Aozasa N, Akamata K, Taniguchi T, et al. A possible contribution of lipocalin-2 to the development of dermal fibrosis, pulmonary vascular involvement, and renal dysfunction in systemic sclerosis. Br J Dermatol. 2015;173(3):681–9.

    Article  CAS  PubMed  Google Scholar 

  54. Montagnana M, Volpe A, Lippi G, Caramaschi P, Salvagno GL, Biasi D, et al. Relationship between matrix metalloproteinases/tissue inhibitors of matrix metalloproteinases systems and autoantibody patterns in systemic sclerosis. Clin Biochem. 2007;40(12):837–42.

    Article  CAS  PubMed  Google Scholar 

  55. Querfeld C, Eckes B, Huerkamp C, Krieg T, Sollberg S. Expression of TGF-beta 1, -beta 2 and -beta 3 in localized and systemic scleroderma. J Dermatol Sci. 1999;21(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  56. Dong C, Zhu S, Wang T, Yoon W, Li Z, Alvarez RJ, et al. Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci U S A. 2002;99(6):3908–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Jimenez SA. Role of endothelial to mesenchymal transition in the pathogenesis of the vascular alterations in systemic sclerosis. ISRN Rheumatol. 2013;2013:835948.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Matsushita T, Hasegawa M, Hamaguchi Y, Takehara K, Sato S. Longitudinal analysis of serum cytokine concentrations in systemic sclerosis: association of interleukin 12 elevation with spontaneous regression of skin sclerosis. J Rheumatol. 2006;33(2):275–84.

    CAS  PubMed  Google Scholar 

  59. Nakashima T, Jinnin M, Yamane K, Honda N, Kajihara I, Makino T, et al. Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. J Immunol. 2012;188(8):3573–83.

    Article  CAS  PubMed  Google Scholar 

  60. Yoshizaki A, Yanaba K, Iwata Y, Komura K, Ogawa A, Akiyama Y, et al. Cell adhesion molecules regulate fibrotic process via Th1/Th2/Th17 cell balance in a bleomycin-induced scleroderma model. J Immunol. 2010;185(4):2502–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Higashi-Kuwata N, Jinnin M, Makino T, Fukushima S, Inoue Y, Muchemwa FC, et al. Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Res Ther. 2010;12(4):R128.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Mo FE, Muntean AG, Chen CC, Stolz DB, Watkins SC, Lau LF. CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol. 2002;22(24):8709–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Chen N, Leu SJ, Todorovic V, Lam SC, Lau LF. Identification of a novel integrin alphavbeta3 binding site in CCN1 (CYR61) critical for pro-angiogenic activities in vascular endothelial cells. J Biol Chem. 2004;279(42):44166–76.

    Article  CAS  PubMed  Google Scholar 

  64. Chen CC, Mo FE, Lau LF. The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts. J Biol Chem. 2001;276(50):47329–37.

    Article  CAS  PubMed  Google Scholar 

  65. Leu SJ, Lam SC, Lau LF. Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem. 2002;277(48):46248–55.

    Article  CAS  PubMed  Google Scholar 

  66. Grote K, Salguero G, Ballmaier M, Dangers M, Drexler H, Schieffer B. The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration. Blood. 2007;110(3):877–85.

    Article  CAS  PubMed  Google Scholar 

  67. Duan H, Fleming J, Pritchard DK, Amon LM, Xue J, Arnett HA, et al. Combined analysis of monocyte and lymphocyte messenger RNA expression with serum protein profiles in patients with scleroderma. Arthritis Rheum. 2008;58(5):1465–74.

    Article  CAS  PubMed  Google Scholar 

  68. Sidky YA, Borden EC. Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res. 1987;47(19):5155–61.

    CAS  PubMed  Google Scholar 

  69. Indraccolo S, Pfeffer U, Minuzzo S, Esposito G, Roni V, Mandruzzato S, et al. Identification of genes selectively regulated by IFNs in endothelial cells. J Immunol. 2007;178(2):1122–35.

    Article  CAS  PubMed  Google Scholar 

  70. Pammer J, Reinisch C, Birner P, Pogoda K, Sturzl M, Tschachler E. Interferon-alpha prevents apoptosis of endothelial cells after short-term exposure but induces replicative senescence after continuous stimulation. Lab Invest. 2006;86(10):997–1007.

    Article  CAS  PubMed  Google Scholar 

  71. Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010;120(1):254–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Fujiu K, Manabe I, Nagai R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J Clin Invest. 2011;121(9):3425–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Whitfield ML, Finlay DR, Murray JI, Troyanskaya OG, Chi JT, Pergamenschikov A, et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A. 2003;100(21):12319–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Chujo S, Shirasaki F, Kawara S, Inagaki Y, Kinbara T, Inaoki M, et al. Connective tissue growth factor causes persistent proalpha2(I) collagen gene expression induced by transforming growth factor-beta in a mouse fibrosis model. J Cell Physiol. 2005;203(2):447–56.

    Article  CAS  PubMed  Google Scholar 

  75. Leask A. Signaling in fibrosis: targeting the TGF beta, endothelin-1 and CCN2 axis in scleroderma. Front Biosci (Elite Ed). 2009;1:115–22.

    Google Scholar 

  76. Perlish JS, Lemlich G, Fleischmajer R. Identification of collagen fibrils in scleroderma skin. J Invest Dermatol. 1988;90(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  77. Fujimoto M, Sato S. B lymphocytes and systemic sclerosis. Curr Opin Rheumatol. 2005;17(6):746–51.

    Article  PubMed  Google Scholar 

  78. Lafyatis R, O’Hara C, Feghali-Bostwick CA, Matteson E. B cell infiltration in systemic sclerosis-associated interstitial lung disease. Arthritis Rheum. 2007;56(9):3167–8.

    Article  PubMed  Google Scholar 

  79. Khan K, Xu S, Nihtyanova S, Derrett-Smith E, Abraham D, Denton CP, et al. Clinical and pathological significance of interleukin 6 overexpression in systemic sclerosis. Ann Rheum Dis. 2012;71(7):1235–42.

    Article  CAS  PubMed  Google Scholar 

  80. Giacomelli R, Cipriani P, Danese C, Pizzuto F, Lattanzio R, Parzanese I, et al. Peripheral blood mononuclear cells of patients with systemic sclerosis produce increased amounts of interleukin 6, but not transforming growth factor beta 1. J Rheumatol. 1996;23(2):291–6.

    CAS  PubMed  Google Scholar 

  81. Bujor AM, Asano Y, Haines P, Lafyatis R, Trojanowska M. The c-Abl tyrosine kinase controls protein kinase Cδ-induced Fli-1 phosphorylation in human dermal fibroblasts. Arthritis Rheum. 2011;63(6):1729–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Guiducci S, Bellando Randone S, Bruni C, Carnesecchi G, Maresta A, Iannone F, et al. Bosentan fosters microvascular de-remodelling in systemic sclerosis. Clin Rheumatol. 2012;31(12):1723–5.

    Article  CAS  PubMed  Google Scholar 

  83. Cutolo M, Zampogna G, Vremis L, Smith V, Pizzorni C, Sulli A. Longterm effects of endothelin receptor antagonism on microvascular damage evaluated by nailfold capillaroscopic analysis in systemic sclerosis. J Rheumatol. 2013;40(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  84. Aden N, Nuttall A, Shiwen X, de Winter P, Leask A, Black CM, et al. Epithelial cells promote fibroblast activation via IL-1alpha in systemic sclerosis. J Invest Dermatol. 2010;130(9):2191–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihide Asano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Asano, Y. (2016). Fli1. In: Takehara, K., Fujimoto, M., Kuwana, M. (eds) Systemic Sclerosis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55708-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55708-1_12

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55707-4

  • Online ISBN: 978-4-431-55708-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics