Skip to main content

Carbon Stock Estimate

  • Chapter
Tropical Peatland Ecosystems

Abstract

Tropical peatlands have changed their role from carbon sinks to carbon sources mainly by recent anthropogenic disturbances. It is an urgent issue to evaluate the importance of tropical peatlands as carbon stocks and to preserve the ecosystems including their carbon dynamics. Spatial distribution of carbon mass at a regional level needs to be delineated in order to utilize it in the simulation of carbon release impact of peat fires or in preservation planning strategy from a carbon dynamic perspective. In this chapter, a simple method to predict peat thickness was introduced. This pridiction method focuses on the differences in phenological characteristics due to the differences in hydroperiod and thickness of peat layer. Since the hydroperiod is a seasonal characteristic of peatlands in Southeast Asia, the phenology of the peat swamp forest was hypothesized to be a predictor of underlying peat thickness. Monthly NOAA-AVHRR data (Sep. 1992–Aug. 1993) were used to trace the fluctuation of vegetation activities among three seasonal periods. The peat swamp forests of Kalimantan was discovered to be classified into eight major phenology types and the classified map was found out be a good indicator to estimate the accumulated peat volume in peat swamp forests. According to our further estimation analysis, the carbon mass below the peat swamp forests (2.04 Mha) and the non-forest area (0.36 Mha) of Central Kalimantan peatlands were estimated to be 1.69 and 0.55 Gt C Mha−1, respectively. Extrapolating these values, we estimate that ca. 27 Gt C is stored within Indonesian peat (16.90 Mha) and 29.9–67.6 Gt C within Southeast Asian peat (19.7–41.5 Mha).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JAR (1964) The structure and development of the swamp of Sarawak and Brunei. J Trop Geogr 18:7–16

    Google Scholar 

  • Armentano TV, Menges ES (1986) Patterns of change in the carbon balance of organic-soil wetlands of the temperate zone. J Ecol 74:755–774

    Article  Google Scholar 

  • BAKOSURTANAL (1997) Peta rupabumi Indonesia 1: 50000, National Coordination Agency for Surveys and Mapping

    Google Scholar 

  • Botch MS, Kobak KI, Vinson TS, Kolchugina TP (1995) Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biogeochem Cycles 9(1):37–46

    Article  Google Scholar 

  • Bruenig EF (1990) Oligotrophic forested wetlands in Borneo. In: Lugo AE, Brinson M, Brown S (eds) Ecosystems of the world 15. Elsevier, Forested Wetlands, pp 299–334

    Google Scholar 

  • Dommain R, Couwenberg J, Joosten H (2011) Hydrological self-regulation of domed peatlands in south-east Asia and consequences for conservation and restoration. Mires Peat 6:1–17

    Google Scholar 

  • Driessen PM (1978) Peat soils. In: Soils and rice. IRRI, Los Banos, pp 763–779

    Google Scholar 

  • Driessen PM, Rochimah L (1976) The physical properties of lowland peats from Kalimantan, Indonesia. In: Peat and Podzolic soils and their potential for agriculture in Indonesia, Soil Research Institute, Bogor, Bulletin No.3, pp 56–73

    Google Scholar 

  • ESRI (1993) The digital chart of the world for use with ARC/INFO software, The Environmental Systems Research Institute, Inc., Redlands

    Google Scholar 

  • FAO (1994) The digital soil map of the world, version 3.0. Land and Water Development Division. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fuller DO, Fulk M (2001) Burned area in Kalimantan, Indonesia mapped with NOAA-AVHRR and Landsat TM imagery. Int J Remote Sens 22(4):691–697

    Article  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warning. Ecol Appl 1(2):182–195

    Article  Google Scholar 

  • Hayashi (1959) Fundamental concept of the theory of quantification and prediction. Proc Inst Math 7(1):43–64 (in Japanese with English summary)

    Google Scholar 

  • Hirano T, Segah H, Harada T, Limin S, Hirata R, Osaki M (2007) Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Glob Chang Biol 13:412–425

    Article  Google Scholar 

  • Hooijer A, Silvius M, Wösten H, Page S (2006) PEAT-CO2 –assessment of CO2 emissions from drained peatlands in SE Asia. Delft Hydraulics report Q3943

    Google Scholar 

  • Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in southeast Asia. Biogeosciences 7:1505–1514

    Article  Google Scholar 

  • Howard PJA, Loveland PJ, Bradley RI, Dry FT, Howard DM, Howard DC (1995) The carbon content of soil and its geographical distribution in Great Britain. Soil Use Manag 11:9–15

    Article  Google Scholar 

  • Immirzi P, Maltby E, Clymo RS (1992) The global status of peatlands and their role in carbon cycling. Report No.11: The Wetland Ecosystems Research Group, University of Exeter, UK

    Google Scholar 

  • Inubushi K, Furukawa Y, Hadi A, Purnomo E, Tsuruta H (2003) Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of south Kalimantan. Chemosphere 52:603–608

    Article  Google Scholar 

  • IPCC (1990) The IPCC Scientific assessment: Intergovernmental Panel of Climate Change, Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jaenicke J, Rieley JO, Mott C, Kimman P, Siegert F (2008) Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147:151–158

    Article  Google Scholar 

  • Koh LP, Miettinen J, Liew SC, Ghazoul J (2009) Remotely sensed evidence of tropical peatland conversion to oil palm. Proc Natl Acad Sci U S A 108(12):5127–5132

    Article  Google Scholar 

  • Maltby E, Immirzi CP (1993) Carbon dynamics in peatlands and other wetland soils. Regional and global perspectives. Chemosphere 27(6):999–1023

    Article  Google Scholar 

  • Melling L, Hatano R, Goh KJ (2005) Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus 57(B):1–11

    Article  Google Scholar 

  • Neuzil SG (1997) Onset and rate of peat and carbon accumulation in four domed ombrogenous peat deposits, Indonesia. In: Rieley JO, Page SE (eds) Biodiversity and sustainability of tropical peatlands. Samara Publishing Limited, Cardigan, pp 55–72

    Google Scholar 

  • Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia in 1997. Nature 420:61–65

    Article  Google Scholar 

  • Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stagenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  Google Scholar 

  • RePPProT (1985–1989) Land systems and land suitability series at 1:250,000 scale, accompanying maps of review, Central Kalimantan, Irian Jaya, East whti South Kalimantan, West Kalimantan, Sumatra, Sulawesi, Maluku with Nusa Tenggara, and Jawa with Bali. Regional Physical Planning Programme for Transmigration. UK Overseas Development Administration and Directorate Bina Program, Jakarta

    Google Scholar 

  • RePPProT (1990) A national overview from the regional physical planning programme for transmigration. UK Overseas Development Administration and Directorate Bina Program, Ministry of Transmigration, Jakarta

    Google Scholar 

  • Robinson SD, Moore TR (1999) Carbon and peat accumulation over the past 1200 years in a landscape with discontinuous permafrost, northwestern Canada. Global Biogeochem Cycles 13(2):591–601

    Article  Google Scholar 

  • Schlesinger WH (1984) Soil organic matter: a source of atmospheric CO2. In: Woodwell GM (ed) The role of terrestrial vegetation in the global carbon cycle: measurement by Remote Sensing. Ch. 4, pp 111–127

    Google Scholar 

  • Shimada S (2001) Distribution of carbon in peat layer and estimation of carbon mass using satellite data in a tropical peatland, Central Kalimantan, Indonesia. Ph D. thesis, Hokkaido University, Japan

    Google Scholar 

  • Shimada S (2003) Estimation of peat thickness of peat swamp forests in central Kalimantan, Indonesia using multi-temporal satellite data. J Jpn Peat Soc 2(1):26–33

    Google Scholar 

  • Shimada S, Takahashi H, Haraguchi A, Kaneko M (2001) The carbon content characteristics of tropical peats in central Kalimantan, Indonesia: estimating their spatial variability in density. Biogeochemistry 53(3):249–267

    Article  Google Scholar 

  • Shimada S, Takahashi H, Kaneko M, Toyoda H (2004) Predicting peat layer mass using remote sensing data in central Kalimantan, Indonesia. In: Mihara M, Yamaji E (eds) Participatory strategy for soil and water conservation, institute of environment rehabilitation and conservation. Soubun Co., Ltd, Tokyo, pp 193–196

    Google Scholar 

  • Sieffermann RG, Fournier M, Triutomo S, Sadelman MT, Semah AM (1988) Velocity of tropical peat accumulation in Central Kalimantan Province, Indonesia (Borneo). In: Proceedings of the 8th International Peat Congress, Leningrad 1, pp 90–98

    Google Scholar 

  • Sorensen KW (1993) Indonesian peat swamp forests and their role as a carbon sink. Chemosphere 27(6):1065–1082

    Article  Google Scholar 

  • Suzuki S, Ishida T, Nagano T, Waijaroen S (1999) Influences of deforestation on carbon balance in a natural tropical peat swamp forest in Thailand. Environ Control Biol 37(2):115–128

    Article  Google Scholar 

  • Wetlands International (2003–2006) Maps of area of peatland distribution and carbon content in Sumatra, in Kalimantan, and in Papua, Wetland International – Indonesia Programme and Wildlife Habitat Canada (WHC)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank S.H. Limin (University of Palangkaraya) for invaluable help at field survey and Jack O. Rieley for helpful advice and variable comments. Results shown in this paper were mainly obtained from SATREPS (Science and Technology Research Partnership for Sustainable Development) project entitled as “Wild fire and carbon management in peat-forest in Indonesia” (2008–2014) founded by JST (Japan Science and Technology Agency) and JICA (Japan International Cooperation Agency) and Core University Program between Hokkaido University and LIP (The Indonesian Institute of Sciences) entitled as “Environmental Conservation and Land Use Managemant of Wetland Ecosystem in Southeast Asia” (1997–2006) founded by JSPS (Japan Soceinty of the Promotion of Science).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sawahiko Shimada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Shimada, S., Takahashi, H., Osaki, M. (2016). Carbon Stock Estimate. In: Osaki, M., Tsuji, N. (eds) Tropical Peatland Ecosystems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55681-7_23

Download citation

Publish with us

Policies and ethics