Muoio DM, Newgard CB (2006) Obesity-related derangements in metabolic regulation. Annu Rev Biochem 75:367–401
CAS
CrossRef
PubMed
Google Scholar
Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Evans RM, Mangelsdorf DJ (2014) Nuclear receptors, RXR, and the big bang. Cell 157(1):255–266
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10(4):355–361
CAS
CrossRef
PubMed
Google Scholar
Ahmadian M et al (2013) PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med 19(5):557–566
CAS
CrossRef
PubMed
Google Scholar
Liu S et al (2011) Role of peroxisome proliferator-activated receptor {delta}/{beta} in hepatic metabolic regulation. J Biol Chem 286(2):1237–1247
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
de Aguiar Vallim TQ, Tarling EJ, Edwards PA (2013) Pleiotropic roles of bile acids in metabolism. Cell Metab 17(5):657–669
PubMed Central
CrossRef
PubMed
Google Scholar
Calkin AC, Tontonoz P (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 13(4):213–224
PubMed Central
CAS
PubMed
Google Scholar
Chawla A et al (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294(5548):1866–1870
CAS
CrossRef
PubMed
Google Scholar
Haeusler RA et al (2012) Impaired generation of 12-hydroxylated bile acids links hepatic insulin signaling with dyslipidemia. Cell Metab 15(1):65–74
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Fu J et al (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425(6953):90–93
CAS
CrossRef
PubMed
Google Scholar
Gaetani S et al (2010) The fat-induced satiety factor oleoylethanolamide suppresses feeding through central release of oxytocin. J Neurosci 30(24):8096–8101
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Sayin SI et al (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17(2):225–235
CAS
CrossRef
PubMed
Google Scholar
Swann JR et al (2011) Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A 108(Suppl 1):4523–4530
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Li F et al (2013) Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 4:2384
PubMed
Google Scholar
Devkota S et al (2012) Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487(7405):104–108
PubMed Central
CAS
PubMed
Google Scholar
Cariou B et al (2006) The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 281(16):11039–11049
CAS
CrossRef
PubMed
Google Scholar
Ma K et al (2006) Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 116(4):1102–1109
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Zhang Y et al (2006) Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 103(4):1006–1011
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Ryan KK et al (2014) FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509(7499):183–188
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Fu S et al (2011) Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473(7348):528–531
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Liu S, Alexander RK, Lee CH (2014) Lipid metabolites as metabolic messengers in inter-organ communication. Trends Endocrinol Metab 25(7):356–363
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Lodhi IJ, Wei X, Semenkovich CF (2011) Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter. Trends Endocrinol Metab 22(1):1–8
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Chakravarthy MV et al (2009) Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 138(3):476–488
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Chakravarthy MV et al (2005) “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1(5):309–322
CAS
CrossRef
PubMed
Google Scholar
Kim JB, Spiegelman BM (1996) ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 10(9):1096–1107
CAS
CrossRef
PubMed
Google Scholar
Lodhi IJ et al (2012) Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARgamma activation to decrease diet-induced obesity. Cell Metab 16(2):189–201
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Kim YG, Lou AC, Saghatelian A (2011) A metabolomics strategy for detecting protein-metabolite interactions to identify natural nuclear receptor ligands. Mol Biosyst 7(4):1046–1049
CAS
CrossRef
PubMed
Google Scholar
Liu S et al (2013) A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature 502(7472):550–554
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Choi JH et al (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466(7305):451–456
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Choi JH et al (2011) Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation. Nature 477(7365):477–481
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Inagaki T et al (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2(4):217–225
CAS
CrossRef
PubMed
Google Scholar
Inagaki T et al (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5(6):415–425
CAS
CrossRef
PubMed
Google Scholar
Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8(3):235–253
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Moore MC et al (2012) Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr 3(3):286–294
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Dong XC et al (2008) Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab 8(1):65–76
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Lu M et al (2012) Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat Med 18(3):388–395
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Kir S et al (2011) FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331(6024):1621–1624
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Badman MK et al (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5(6):426–437
CAS
CrossRef
PubMed
Google Scholar
Dutchak PA et al (2012) Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 148(3):556–567
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Bookout AL et al (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19(9):1147–1152
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Owen BM et al (2013) FGF21 contributes to neuroendocrine control of female reproduction. Nat Med 19(9):1153–1156
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Xu J et al (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58(1):250–259
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Lin Z et al (2013) Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17(5):779–789
CAS
CrossRef
PubMed
Google Scholar
Hondares E et al (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 286(15):12983–12990
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Kim KH et al (2013) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19(1):83–92
CAS
CrossRef
PubMed
Google Scholar
Stroeve JH et al (2010) Intestinal FXR-mediated FGF15 production contributes to diurnal control of hepatic bile acid synthesis in mice. Lab Invest 90(10):1457–1467
CAS
CrossRef
PubMed
Google Scholar
Fon Tacer K et al (2010) Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24(10):2050–2064
PubMed Central
CrossRef
PubMed
Google Scholar
Miller DL et al (2000) Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 20(6):2260–2268
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Jonker JW et al (2012) A PPARgamma-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 485(7398):391–394
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121(6):2094–2101
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Hutley L et al (2004) Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes 53(12):3097–3106
CAS
CrossRef
PubMed
Google Scholar
Suh JM et al (2014) Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature 513(7518):436–439
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83(6):841–850
CAS
CrossRef
PubMed
Google Scholar
Fan W et al (2013) Road to exercise mimetics: targeting nuclear receptors in skeletal muscle. J Mol Endocrinol 51(3):T87–T100
PubMed Central
CAS
CrossRef
PubMed
Google Scholar