Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947. doi:10.1038/nrd4002
CAS
PubMed
CrossRef
Google Scholar
Yoshida T, Goto S, Kawakatsu M et al (2012) Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic Res 46:147–153. doi:10.3109/10715762.2011.645207
CAS
PubMed
CrossRef
Google Scholar
Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:37–52. doi:10.1196/annals.1427.015
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–214
CAS
CrossRef
Google Scholar
Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Nègre-Salvayre A, Hirtz C, Carrera G et al (1997) A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 11:809–815. doi:10.1096/fj.1530-6860
PubMed
Google Scholar
Handy DE, Loscalzo J (2012) Redox regulation of mitochondrial function. Antioxid Redox Signal 16:1323–1367. doi:10.1089/ars.2011.4123
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40. doi:10.1016/j.cbi.2005.12.009
CAS
PubMed
CrossRef
Google Scholar
Wall SB, Oh J-Y, Diers AR, Landar A (2012) Oxidative modification of proteins: an emerging mechanism of cell signaling. Front Physiol 3:1–9. doi:10.3389/fphys.2012.00369
CrossRef
CAS
Google Scholar
Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842. doi:10.1021/bi9020378
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434:201–210. doi:10.1042/BJ20101695
CAS
PubMed
CrossRef
Google Scholar
Wang G, Hong Y, Johnson MK, Maier RJ (2006) Lipid peroxidation as a source of oxidative damage in Helicobacter pylori: protective roles of peroxiredoxins. Biochim Biophys Acta 1760:1596–1603. doi:10.1016/j.bbagen.2006.05.005
CAS
PubMed
CrossRef
Google Scholar
Bansal AK, Bilaspuri GS (2009) Antioxidant effect of vitamin E on motility, viability and lipid peroxidation of cattle spermatozoa under oxidative stress. Anim Sci Paper Rep 27:5–14
CAS
Google Scholar
Jang S, Imlay JA (2007) Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J Biol Chem 282:929–937. doi:10.1074/jbc.M607646200
CAS
PubMed
CrossRef
Google Scholar
Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224. doi:10.1126/science.1355616
CAS
PubMed
CrossRef
Google Scholar
Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218. doi:10.1007/s00726-003-0011-2
CAS
PubMed
CrossRef
Google Scholar
Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22. doi:10.1096/fj.1530-6860
CAS
PubMed
Google Scholar
Bae YS, Kang SW, Seo MS et al (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221. doi:10.1074/jbc.272.1.217
CAS
PubMed
CrossRef
Google Scholar
Catarzi S, Degl’Innocenti D, Iantomasi T et al (2002) The role of H2O2 in the platelet-derived growth factor-induced transcription of the gamma-glutamylcysteine synthetase heavy subunit. Cell Mol Life Sci 59:1388–1394
CAS
PubMed
CrossRef
Google Scholar
Brandes N, Schmitt S, Jakob U (2009) Thiol-based redox switches in eukaryotic proteins. Antioxid Redox Signal 11:997–1014. doi:10.1089/ARS.2008.2285
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Groitl B, Jakob U (2014) Thiol-based redox switches. Biochim Biophys Acta 1844:1335–1343. doi:10.1016/j.bbapap.2014.03.007
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Xu D, Rovira II, Finkel T (2002) Oxidants painting the cysteine chapel: redox regulation of PTPs. Dev Cell 2:251–252
CAS
PubMed
CrossRef
Google Scholar
Leslie NR, Bennett D, Lindsay YE et al (2003) Redox regulation of PI 3‐kinase signalling via inactivation of PTEN. EMBO J 22:5501–5510. doi:10.1093/emboj/cdg513
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Kobayashi A, Kang M-I, Okawa H et al (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139. doi:10.1128/MCB.24.16.7130-7139.2004
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Dinkova-Kostova AT, Holtzclaw WD, Cole RN et al (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci 99:11908–11913. doi:10.1073/pnas.172398899
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23:8137–8151. doi:10.1128/MCB.23.22.8137-8151.2003
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Adam J, Hatipoglu E, O’Flaherty L et al (2011) Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20:524–537. doi:10.1016/j.ccr.2011.09.006
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. TIBS 39:199–218. doi:10.1016/j.tibs.2014.02.002
CAS
PubMed
Google Scholar
Forman HJ, Fridovich I (1973) Superoxide dismutase: a comparison of rate constants. Arch Biochem Biophys 158:396–400
CAS
PubMed
CrossRef
Google Scholar
Holmgren A, Johansson C, Berndt C et al (2005) Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans 33:1375–1377. doi:10.1042/BST20051375
CAS
PubMed
CrossRef
Google Scholar
Thomas JP, Maiorino M, Ursini F, Girotti AW (1990) Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. J Biol Chem 265:454–461
CAS
PubMed
Google Scholar
Wu KC, Cui JY, Klaassen CD (2011) Beneficial role of Nrf2 in regulating NADPH generation and consumption. Toxicol Sci 123:590–600. doi:10.1093/toxsci/kfr183
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Mitsuishi Y, Taguchi K, Kawatani Y et al (2012) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22:66–79. doi:10.1016/j.ccr.2012.05.016
CAS
PubMed
CrossRef
Google Scholar
Stanton RC (2012) Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life 64:362–369. doi:10.1002/iub.1017
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
McCubrey JA, Lahair MM, Franklin RA (2006) Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 8:1775–1789. doi:10.1089/ars.2006.8.1775
CAS
PubMed
CrossRef
Google Scholar
Yoshihara E, Masaki S, Matsuo Y et al (2014) Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol 4:514. doi:10.3389/fimmu.2013.00514
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Wu N, Zheng B, Shaywitz A et al (2013) AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell 49:1167–1175. doi:10.1016/j.molcel.2013.01.035
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Cecarini V, Gee J, Fioretti E et al (2007) Protein oxidation and cellular homeostasis: emphasis on metabolism. Biochim Biophys Acta 1773:93–104. doi:10.1016/j.bbamcr.2006.08.039
CAS
PubMed
CrossRef
Google Scholar
Gardner PR (2002) Aconitase: sensitive target and measure of superoxide. Meth Enzymol 349:9–23
CAS
PubMed
CrossRef
Google Scholar
Cochrane CG (1991) Cellular injury by oxidants. Am J Med 91:23S–30S
CAS
PubMed
CrossRef
Google Scholar
Voet D, Voet JG, Pratt CW (2008) Fundamentals of biochemistry. Hoboken, New Jersey, USA
Google Scholar
Salway JG (2004) Metabolism at a glance. Blackwell, Malden
Google Scholar
Riganti C, Gazzano E, Polimeni M et al (2012) The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 53:421–436. doi:10.1016/j.freeradbiomed.2012.05.006
CAS
PubMed
CrossRef
Google Scholar
Cosentino C, Grieco D, Costanzo V (2011) ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J 30:546–555. doi:10.1038/emboj.2010.330
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Jiang P, Du W, Wang X et al (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316. doi:10.1038/ncb2172
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Tian WN, Pignatare JN, Stanton RC (1994) Signal transduction proteins that associate with the platelet-derived growth factor (PDGF) receptor mediate the PDGF-induced release of glucose-6-phosphate dehydrogenase from permeabilized cells. J Biol Chem 269:14798–14805
CAS
PubMed
Google Scholar
Pan S, World CJ, Kovacs CJ, Berk BC (2009) Glucose 6-phosphate dehydrogenase is regulated through c-Src-mediated tyrosine phosphorylation in endothelial cells. Arterioscler Thromb Vasc Biol 29:895–901. doi:10.1161/ATVBAHA.109.184812
CAS
PubMed
CrossRef
Google Scholar
Holten D, Procsal D, Chang HL (1976) Regulation of pentose phosphate pathway dehydrogenases by NADP+/NADPH ratios. Biochem Biophys Res Commun 68:436–441
CAS
PubMed
CrossRef
Google Scholar
Kotaka M, Gover S, Vandeputte-Rutten L et al (2005) Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr 61:495–504. doi:10.1107/S0907444905002350
PubMed
CrossRef
CAS
Google Scholar
Cappellini MD, Fiorelli G (2008) Glucose-6-phosphate dehydrogenase deficiency. Lancet 371:64–74. doi:10.1016/S0140-6736(08)60073-2
CAS
PubMed
CrossRef
Google Scholar
Luzzatto L, Seneca E (2014) G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications. Br J Haematol 164:469–480. doi:10.1111/bjh.12665
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Pandolfi PP, Sonati F, Rivi R et al (1995) Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J 14:5209–5215
PubMed Central
CAS
PubMed
Google Scholar
Tian WN, Braunstein LD, Apse K et al (1999) Importance of glucose-6-phosphate dehydrogenase activity in cell death. Am J Physiol 276:C1121–C1131
CAS
PubMed
Google Scholar
Tuttle S, Stamato T, Perez ML, Biaglow J (2000) Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation. Radiat Res 153:781–787. doi:10.1667/0033-7587(2000)153%5B0781:GPDATO%5D2.0.CO;2
CAS
PubMed
CrossRef
Google Scholar
Tian WN, Braunstein LD, Pang J et al (1998) Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem 273:10609–10617. doi:10.1074/jbc.273.17.10609
CAS
PubMed
CrossRef
Google Scholar
Son J, Lyssiotis CA, Ying H et al (2014) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496:101–105. doi:10.1038/nature12040
CrossRef
CAS
Google Scholar
Ying H, Kimmelman AC, Lyssiotis CA et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–670. doi:10.1016/j.cell.2012.01.058
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Fan J, Ye J, Kamphorst JJ et al (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:298–302. doi:10.1038/nature13236
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Tuttle SW, Varnes ME, Mitchell JB, Biaglow JE (1992) Sensitivity to chemical oxidants and radiation in CHO cell lines deficient in oxidative pentose cycle activity. Int J Radiat Oncol Biol Phys 22:671–675
CAS
PubMed
CrossRef
Google Scholar
Yalcin A, Telang S, Clem B, Chesney J (2009) Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp Mol Pathol 86:174–179. doi:10.1016/j.yexmp.2009.01.003
CAS
PubMed
CrossRef
Google Scholar
Jenkins CM, Yang J, Sims HF, Gross RW (2011) Reversible high affinity inhibition of phosphofructokinase-1 by acyl-CoA: a mechanism integrating glycolytic flux with lipid metabolism. J Biol Chem 286:11937–11950. doi:10.1074/jbc.M110.203661
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Dunaway GA, Kasten TP, Sebo T, Trapp R (1988) Analysis of the phosphofructokinase subunits and isoenzymes in human tissues. Biochem J 251:677–683
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464. doi:10.1146/annurev-cellbio-092910-154237
CAS
PubMed
CrossRef
Google Scholar
Mor I, Cheung EC, Vousden KH (2011) Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb Symp Quant Biol 76:211–216. doi:10.1101/sqb.2011.76.010868
CAS
PubMed
CrossRef
Google Scholar
Lee P, Vousden KH, Cheung EC (2014) TIGAR, TIGAR, burning bright. Cancer Metab 2:1. doi:10.1186/2049-3002-2-1
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Yi W, Clark PM, Mason DE et al (2012) Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337:975–980. doi:10.1126/science.1222278
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Jen K-Y, Cheung VG (2005) Identification of novel p53 target genes in ionizing radiation response. Cancer Res 65:7666–7673. doi:10.1158/0008-5472.CAN-05-1039
CAS
PubMed
Google Scholar
Bensaad K, Tsuruta A, Selak MA et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120. doi:10.1016/j.cell.2006.05.036
CAS
PubMed
CrossRef
Google Scholar
Peña-Rico MA, Calvo-Vidal MN, Villalonga-Planells R et al (2011) TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown results in radiosensitization of glioma cells. Radiother Oncol 101:132–139. doi:10.1016/j.radonc.2011.07.002
PubMed
CrossRef
CAS
Google Scholar
Lui VWY, Wong EYL, Ho K et al (2011) Inhibition of c-Met downregulates TIGAR expression and reduces NADPH production leading to cell death. Oncogene 30:1127–1134. doi:10.1038/onc.2010.490
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Wanka C, Steinbach JP, Rieger J (2012) Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J Biol Chem 287:33436–33446. doi:10.1074/jbc.M112.384578
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Cheung EC, Athineos D, Lee P et al (2013) TIGAR is required for efficient intestinal regeneration and tumorigenesis. Dev Cell 25:463–477. doi:10.1016/j.devcel.2013.05.001
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Cheung EC, Ludwig RL, Vousden KH (2012) Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A 109:20491–20496. doi:10.1073/pnas.1206530109
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Seidler NW (2012) GAPDH: biological properties and diversity. Adv Exp Med Biol 985:21–29
Google Scholar
Williamson JR (1965) Glycolytic control mechanisms. I. Inhibition of glycolysis by acetate and pyruvate in the isolated, perfused rat heart. J Biol Chem 240:2308–2321
CAS
PubMed
Google Scholar
Hyslop PA, Hinshaw DB, Halsey WA et al (1988) Mechanisms of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J Biol Chem 263:1665–1675
CAS
PubMed
Google Scholar
Leichert LI, Gehrke F, Gudiseva HV et al (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A 105:8197–8202. doi:10.1073/pnas.0707723105
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Maller C, Schröder E, Eaton P (2011) Glyceraldehyde 3-phosphate dehydrogenase is unlikely to mediate hydrogen peroxide signaling: studies with a novel anti-dimedone sulfenic acid antibody. Antioxid Redox Signal 14:49–60. doi:10.1089/ars.2010.3149
CAS
PubMed
CrossRef
Google Scholar
Jeong J, Jung Y, Na S et al (2011) Novel oxidative modifications in redox-active cysteine residues. Mol Cell Proteomics 10(3):M110.000513. doi:10.1074/mcp.M110.000513
Schmalhausen EV, Pleten AP, Muronetz VI (2003) Ascorbate-induced oxidation of glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 308:492–496. doi:10.1016/S0006-291X(03)01421-9
CAS
PubMed
CrossRef
Google Scholar
Schuppe-Koistinen I, Moldéus P, Bergman T, Cotgreave IA (1994) S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment. Eur J Biochem 221:1033–1037
CAS
PubMed
CrossRef
Google Scholar
Ravichandran V, Seres T, Moriguchi T (1994) S-thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. J Biol Chem 269:25010–25015
CAS
PubMed
Google Scholar
Shenton D, Grant CM (2003) Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem J 374:513–519. doi:10.1042/BJ20030414
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Grant CM, Quinn KA, Dawes IW (1999) Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 19:2650–2656
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Nakajima H, Amano W, Kubo T et al (2009) Glyceraldehyde-3-phosphate dehydrogenase aggregate formation participates in oxidative stress-induced cell death. J Biol Chem 284:34331–34341. doi:10.1074/jbc.M109.027698
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Butterfield DA, Hardas SS, Lange MLB (2010) Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: many pathways to neurodegeneration. J Alzheimers Dis 20:369–393. doi:10.3233/JAD-2010-1375
PubMed Central
CAS
PubMed
Google Scholar
Godon C, Lagniel G, Lee J et al (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273:22480–22489
CAS
PubMed
CrossRef
Google Scholar
Ralser M, Wamelink MM, Kowald A et al (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10. doi:10.1186/jbiol61
PubMed Central
PubMed
CrossRef
Google Scholar
Ralser M, Heeren G, Breitenbach M et al (2006) Triose phosphate isomerase deficiency is caused by altered dimerization – not catalytic inactivity – of the mutant enzymes. PLoS One 1:e30. doi:10.1371/journal.pone.0000030
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Clower CV, Chatterjee D, Wang Z et al (2010) The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc Natl Acad Sci U S A 107:1894–1899. doi:10.1073/pnas.0914845107
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Noguchi T, Yamada K, Inoue H et al (1987) The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem 262:14366–14371
CAS
PubMed
Google Scholar
Noguchi T, Inoue H, Tanaka T (1986) The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem 261:13807–13812
CAS
PubMed
Google Scholar
David CJ, Chen M, Assanah M et al (2010) HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463:364–368. doi:10.1038/nature08697
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Imamura K, Tanaka T (1972) Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. I. Electrophoretic studies. J Biochem 71:1043–1051
CAS
PubMed
Google Scholar
Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43:969–980. doi:10.1016/j.biocel.2010.02.005
CAS
PubMed
CrossRef
Google Scholar
Keller KE, Doctor ZM, Dwyer ZW, Lee Y-S (2014) SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol Cell 53:700–709. doi:10.1016/j.molcel.2014.02.015
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Keller KE, Tan IS, Lee Y-S (2012) SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science 338:1069–1072. doi:10.1126/science.1224409
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Chaneton B, Hillmann P, Zheng L et al (2013) Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491:458–462. doi:10.1038/nature11540
CrossRef
CAS
Google Scholar
Ashizawa K, Willingham MC, Liang CM, Cheng SY (1991) In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-bisphosphate. J Biol Chem 266:16842–16846
CAS
PubMed
Google Scholar
Ikeda Y, Noguchi T (1998) Allosteric regulation of pyruvate kinase M2 isozyme involves a cysteine residue in the intersubunit contact. J Biol Chem 273:12227–12233
CAS
PubMed
CrossRef
Google Scholar
Anastasiou D, Yu Y, Israelsen WJ et al (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8:839–847. doi:10.1038/nchembio.1060
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Christofk HR, Vander Heiden MG, Wu N et al (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186. doi:10.1038/nature06667
CAS
PubMed
CrossRef
Google Scholar
Lv L, Xu Y-P, Zhao D et al (2013) Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell 52:340–352. doi:10.1016/j.molcel.2013.09.004
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Hitosugi T, Kang S, Vander Heiden MG et al (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2:ra73. doi:10.1126/scisignal.2000431
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1–pl1. doi:10.1126/scisignal.2004088
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Gao X, Wang H, Yang JJ et al (2012) Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell 45:598–609. doi:10.1016/j.molcel.2012.01.001
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Israelsen WJ, Dayton TL, Davidson SM et al (2013) PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155:397–409. doi:10.1016/j.cell.2013.09.025
CAS
PubMed
CrossRef
Google Scholar
Yang W, Xia Y, Hawke D et al (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150:685–696. doi:10.1016/j.cell.2012.07.018
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Christofk HR, Vander Heiden MG, Harris MH et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233. doi:10.1038/nature06734
CAS
PubMed
CrossRef
Google Scholar
McKnight SL (2014) Please keep me 2uned to PKM2. Mol Cell 53:683–684. doi:10.1016/j.molcel.2014.02.022
CAS
PubMed
CrossRef
Google Scholar
Yang W, Xia Y, Ji H et al (2011) Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 480:118–122. doi:10.1038/nature10598
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Anastasiou D, Poulogiannis G, Asara JM et al (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:1278–1283. doi:10.1126/science.1211485
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Maeba P, Sanwal BD (1968) The regulation of pyruvate kinase of Escherichia coli by fructose diphosphate and adenylic acid. J Biol Chem 243:448–450
CAS
PubMed
Google Scholar
McDonagh B, Ogueta S, Lasarte G, Padilla CA (2009) Shotgun redox proteomics identifies specifically modified cysteines in key metabolic enzymes under oxidative stress in Saccharomyces cerevisiae. J Proteomics 72:677–689. doi:10.1016/j.jprot.2009.01.023
CAS
PubMed
CrossRef
Google Scholar
Grüning N-M, Rinnerthaler M, Bluemlein K et al (2011) Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab 14:415–427. doi:10.1016/j.cmet.2011.06.017
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Grüning N-M, Du D, Keller MA et al (2014) Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis. Open Biol 4:130232. doi:10.1098/rsob.130232
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Luo W, Hu H, Chang R et al (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145:732–744. doi:10.1016/j.cell.2011.03.054
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Luo W, Semenza GL (2011) Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget 2:551–556
PubMed Central
PubMed
CrossRef
Google Scholar
Snell K, Natsumeda Y, Eble JN et al (1988) Enzymic imbalance in serine metabolism in human colon carcinoma and rat sarcoma. Br J Cancer 57:87–90
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Snell K (1986) The duality of pathways for serine biosynthesis is a fallacy. TIBS 11(6):241–243
CAS
Google Scholar
Mullarky E, Mattaini KR, Vander Heiden MG et al (2011) PHGDH amplification and altered glucose metabolism in human melanoma. Pigment Cell Melanoma Res 24:1112–1115. doi:10.1111/j.1755-148X.2011.00919.x
CAS
PubMed
CrossRef
Google Scholar
Barker GA, Ellory JC (1990) The identification of neutral amino acid transport systems. Exp Physiol 75:3–26
CAS
PubMed
CrossRef
Google Scholar
Palacín M, Estévez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054
PubMed
Google Scholar
Possemato R, Marks KM, Shaul YD et al (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–350. doi:10.1038/nature10350
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Locasale JW, Grassian AR, Melman T et al (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43:869–874. doi:10.1038/ng.890
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Hitosugi T, Zhou L, Elf S et al (2012) Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 22:585–600. doi:10.1016/j.ccr.2012.09.020
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Futerman AH, Riezman H (2005) The ins and outs of sphingolipid synthesis. Trends Cell Biol 15:312–318. doi:10.1016/j.tcb.2005.04.006
CAS
PubMed
CrossRef
Google Scholar
Kuge O, Hasegawa K, Saito K, Nishijima M (1998) Control of phosphatidylserine biosynthesis through phosphatidylserine-mediated inhibition of phosphatidylserine synthase I in Chinese hamster ovary cells. Proc Natl Acad Sci 95:4199–4203
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
de Koning TJ, Snell K, Duran M et al (2003) L-serine in disease and development. Biochem J 371:653–661. doi:10.1042/BJ20021785
PubMed Central
PubMed
CrossRef
Google Scholar
Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. doi:10.1126/science.1160809
PubMed Central
CAS
PubMed
CrossRef
Google Scholar