Skip to main content

Abstract

Fungicide resistance is an increasing problem in agriculture and threatens the performance of fungicides to protect plants against fungal diseases. The most common mechanism of resistance in plant pathogenic fungi is target site alteration, which usually confers medium or high levels of resistance against a specific group of fungicides. Resistance based on increased drug efflux mediated by membrane transporters, called MDR (multidrug resistance), has been discovered as a significant alternative resistance mechanism in Botrytis cinerea field populations and also in a few other fungi. MDR is caused by mutations leading to overexpression of ABC- or MFS-type multidrug transporters, resulting in low to medium resistance levels against different classes of fungicides. The main MDR type in B. cinerea, called MDR1, is of practical relevance because it significantly reduces the sensitivity against the phenylpyrrole fungicide fludioxonil and the anilinopyrimidines. In several countries, B. cinerea populations have been observed in recent years that have acquired both MDR1 and target site resistance against all site-specific fungicides registered against Botrytis, which make chemical control of grey mould increasingly difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiri A, Heath SM, Peres NA (2013) Phenotypic characterization of multifungicide resistance in Botrytis cinerea isolates from strawberry fields in Florida. Plant Dis 97(3):393–401

    Article  Google Scholar 

  • Ammar A, Tryono R, Döll K et al (2013) Identification of ABC transporter genes of Fusarium graminearum with roles in azole tolerance and/or virulence. PLoS One 8(11):e79042

    Article  PubMed Central  PubMed  Google Scholar 

  • Amnuaykanjanasin A, Daub ME (2009) The ABC transporter ATR1 is necessary for efflux of the toxin cercosporin in the fungus Cercospora nicotianae. Fungal Genet Biol 46(2):146–158

    Article  CAS  PubMed  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JA et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7(8):e1002230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balzi E, Wang M, Leterme S et al (1994) Pdr5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator Pdr1. J Biol Chem 269(3):2206–2214

    CAS  PubMed  Google Scholar 

  • Bauer BE, Wolfger H, Kuchler K (1999) Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. Biochim Biophys Acta 1461(2):217–236

    Article  CAS  PubMed  Google Scholar 

  • Cannon RD, Lamping E, Holmes AR et al (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 22(2):291–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chapeland F, Fritz R, Lanen C et al (1999) Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea (Botryotinia fuckeliana). Pestic Biochem Physiol 64(2):85–100

    Article  CAS  Google Scholar 

  • Choquer M, Fournier E, Kunz C et al (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Coleman JJ, Mylonakis E (2009) Efflux in fungi: La pièce de résistance. PLoS Pathog 5(6):e1000486

    Article  PubMed Central  PubMed  Google Scholar 

  • Cools HJ, Fraaije BA (2013) Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Manag Sci 69(2):150–155

    Article  CAS  PubMed  Google Scholar 

  • De Miccolis Angelini RM, Rotolo C, Masiello M et al (2014) Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Manag Sci 70(12):1785–1796

    Article  PubMed  Google Scholar 

  • De Waard MA, Andrade AC, Hayashi K et al (2006) Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Manag Sci 62(3):195–207

    Article  PubMed  Google Scholar 

  • Decottignies A, Grant AM, Nichols JW et al (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273(20):12612–12622

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Ortuno D, Bryson PK, Grabke A et al (2013) Monitoring for resistance in Botrytis cinerea from strawberry to seven chemical classes of fungicides in the eastern United States. Phytopathology 103(6):43

    Google Scholar 

  • Hamamoto H, Hasegawa K, Nakaune R et al (2000) Tandem repeat of a transcriptional enhancer upstream of the sterol 14 alpha-demethylase gene (CYP51) in Penicillium digitatum. Appl Environ Microbiol 66(8):3421–3426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamamoto H, Nawata O, Hasegawa K et al (2001) The role of the ABC transporter gene PMR1 in demethylation inhibitor resistance in Penicillium digitatum. Pestic Biochem Physiol 70(1):19–26

    Article  CAS  Google Scholar 

  • Hayashi K, Schoonbeek HJ, De Waard MA (2002) Bcmfs1, a novel major facilitator superfamily transporter from Botrytis cinerea, provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides. Appl Environ Microbiol 68(10):4996–5004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayashi K, Schoonbeek HJ, De Waard MA (2003) Modulators of membrane drug transporters potentiate the activity of the DMI fungicide oxpoconazole against Botrytis cinerea. Pest Manag Sci 59(3):294–302

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Tokai T, Takahashi-Ando N et al (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71(9):2105–2123

    Article  CAS  PubMed  Google Scholar 

  • Konstantinou S, Veloukas T, Leroch M et al (2014) Population structure, multiple fungicide resistance profile, and sdhB mutation frequency of Botrytis cinerea from strawberries and greenhouse-grown tomatoes in Greece. Plant Dis 99(2):240–248

    Article  Google Scholar 

  • Kretschmer M, Leroch M, Mosbach A et al (2009) Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog 5(12):e1000696

    Article  PubMed Central  PubMed  Google Scholar 

  • Lamping E, Baret PV, Holmes AR et al (2010) Fungal PDR transporters: phylogeny, topology, motifs and function. Fungal Genet Biol 47(2):127–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leroch M, Kretschmer M, Hahn M (2011) Fungicide resistance phenotypes of Botrytis cinerea isolates from commercial vineyards in South West Germany. Phytopathology 159(1):63–65

    Article  CAS  Google Scholar 

  • Leroch M, Plesken C, Weber RW et al (2013) Gray mold populations in German strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea. Appl Environ Microbiol 79(1):159–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leroux P, Walker AS (2011) Multiple mechanisms account for resistance to sterol 14 alpha-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Manag Sci 67(1):44–59

    Article  CAS  PubMed  Google Scholar 

  • Leroux P, Walker AS (2013) Activity of fungicides and modulators of membrane drug transporters in field strains of Botrytis cinerea displaying multidrug resistance. Eur J Plant Pathol 135(4):683–693

    Article  CAS  Google Scholar 

  • Leroux P, Gredt M, Leroch M, Walker AS (2010) Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Appl Environ Microbiol 76(19):6615–6630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leroux P, Gredt M, Remuson F et al (2013) Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae. Pest Manag Sci 69(1):15–26

    Article  CAS  PubMed  Google Scholar 

  • Li XP, Fernandez-Ortuno D, Grabke A et al (2014) Resistance to fludioxonil in Botrytis cinerea isolates from blackberry and strawberry. Phytopathology 104(7):724–732

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Michailides TJ (2005) Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot 24(10):853–863

    Article  CAS  Google Scholar 

  • Mernke D, Dahm S, Walker AS et al (2011) Two promoter rearrangements in a drug efflux transporter gene are responsible for the appearance and spread of multidrug resistance phenotype MDR2 in Botrytis cinerea isolates in French and German vineyards. Phytopathology 101(10):1176–1183

    Article  CAS  PubMed  Google Scholar 

  • Monk BC, Goffeau A (2008) Outwitting multidrug resistance to antifungals. Science 321(5887):367–369

    Article  CAS  PubMed  Google Scholar 

  • Morschhauser J (2010) Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 47(2):94–106

    Article  PubMed  Google Scholar 

  • Nakaune R, Adachi K, Nawata O et al (1998) A novel ATP-binding cassette transporter involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Appl Environ Microbiol 64(10):3983–3988

    PubMed Central  CAS  PubMed  Google Scholar 

  • Patkar RN, Xue YK, Shui G et al (2012) Abc3-mediated efflux of an endogenous digoxin-like steroidal glycoside by Magnaporthe oryzae is necessary for host invasion during blast disease. PLoS Pathog 8(8):e1002888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petit AN, Vaillant-Gaveau N, Walker AS et al (2010) Determinants of fenhexamid effectiveness against grey mould on grapevine: respective role of spray timing, fungicide resistance and plant defences. Crop Prot 29(10):1162–1167

    Article  CAS  Google Scholar 

  • Ponte-Sucre A (2007) Availability and applications of ATP-binding cassette (ABC) transporter blockers. Appl Microbiol Biotechnol 76(2):279–286

    Article  CAS  PubMed  Google Scholar 

  • Reimann S, Deising HB (2005) Inhibition of efflux transporter-mediated fungicide resistance in Pyrenophora tritici-repentis by a derivative of 4′-hydroxyflavone and enhancement of fungicide activity. Appl Environ Microbiol 71(6):3269–3275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roohparvar R, Huser A, Zwiers LH et al (2007) Control of Mycosphaerella graminicola on wheat seedlings by medical drugs known to modulate the activity of ATP-binding cassette transporters. Appl Environ Microbiol 73(15):5011–5019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schoonbeek H, Del Sorbo G, de Waard MA (2001) The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol Plant-Microbe Interact 14(4):562–571

    Article  CAS  PubMed  Google Scholar 

  • Sierotzki H, Scalliet G (2013) A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 103(9):880–887

    Article  CAS  PubMed  Google Scholar 

  • Stefanato FL, Abou-Mansour E, Buchala A et al (2009) The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant J 58(3):499–510

    Article  CAS  PubMed  Google Scholar 

  • Stergiopoulos I, de Waard MA (2002) Activity of azole fungicides and ABC transporter modulators on Mycosphaerella graminicola. J Phytopathol 150(6):313–320

    Article  CAS  Google Scholar 

  • Thakur JK, Arthanari H, Yang FJ et al (2008) A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature 452(7187):604–609

    Article  CAS  PubMed  Google Scholar 

  • Urban M, Bhargava T, Hamer JE (1999) An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J 18(3):512–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walker AS, Micoud A, Remuson F et al (2013) French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Pest Manag Sci 69(6):667–678

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to our colleagues George Karaoglanidis, Roland Weber and Sabine Fillinger for sharing unpublished data for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hahn, M., Leroch, M. (2015). Multidrug Efflux Transporters. In: Ishii, H., Hollomon, D. (eds) Fungicide Resistance in Plant Pathogens. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55642-8_15

Download citation

Publish with us

Policies and ethics