Skip to main content

Advertisement

Log in

Availability and applications of ATP-binding cassette (ABC) transporter blockers

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

ATP-binding cassette (ABC) transporters encompass membrane transport proteins that couple the energy derived from ATP hydrolysis to the translocation of solutes across biological membranes. The functions of these proteins include ancient and conserved mechanisms related to nutrition and pathogenesis in bacteria, spore formation in fungi, and signal transduction, protein secretion and antigen presentation in eukaryotes. Furthermore, one of the major causes of drug resistance and chemotherapeutic failure in both cancer and anti-infective therapies is the active movement of compounds across membranes carried out by ABC transporters. Thus, the clinical relevance of ABC transporters is enormous, and the membrane transporters related to chemoresistance are among the best-studied members of the ABC transporter superfamily. As ABC transporter blockers can be used in combination with current drugs to increase their efficacy, the (possible) impact of efflux pump inhibitors is of great clinical interest. The present review summarizes the progress made in recent years in the identification, design, availability, and applicability of ABC transporter blockers in experimental scenarios oriented towards improving the treatment of infectious diseases caused by microorganisms including parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, Schellens JH, Koomen GJ, Schinkel AH (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1:417–425

    CAS  PubMed  Google Scholar 

  • Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    CAS  PubMed  Google Scholar 

  • Balayssac D, Authier N, Cayre A, Coudore F (2005) Does inhibition of P-glycoprotein lead to drug–drug interactions? Toxicol Lett 156:319–329

    CAS  PubMed  Google Scholar 

  • Berger J, Gartner J (2006) X-linked adrenoleukodystrophy: clinical, biochemical and pathogenetic aspects. Biochim Biophys Acta 1763:1721–1732

    CAS  PubMed  Google Scholar 

  • Bisi A, Gobbi S, Rampa A, Belluti F, Piazzi L, Valenti P, Gyemant N, Molnár J (2006) New potent P-glycoprotein inhibitors carrying a polycyclic scaffold. J Med Chem 49:3049–3051

    CAS  PubMed  Google Scholar 

  • Boesch D, Gaveriaux C, Jachez B, Pourtier-Manzanedo A, Bollinger P, Loor F (1991) In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res 51:4226–33

    CAS  PubMed  Google Scholar 

  • Borst P, Evers R, Kool M, Winholds J (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92:1295–1302

    CAS  PubMed  Google Scholar 

  • Boumendjel A, Baubichon-Cortay H, Trompier D, Perrotton T, Di Pietro A (2005) Anticancer multidrug resistance mediated by MRP1: recent advances in the discovery of reversal agents. Med Res Rev 25:453–472

    CAS  PubMed  Google Scholar 

  • Choi CH, Sun KH, An CS, Yoo JC, Hahm KS, Lee IH, Sohng JK, Kim YC (2002) Reversal of P-glycoprotein-mediated multidrug resistance by 5,6,7,3′,4′-pentamethoxyflavone (Sinensetin). Biochem Biophys Res Commun 295:832–840

    CAS  PubMed  Google Scholar 

  • Cole S, Deeley RG (1998) Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP. BioEssays 20:931–940

    CAS  PubMed  Google Scholar 

  • Dantzig AH, Alwis DP, Burgess M (2003) Considerations in the design and development of transport inhibitors as adjuncts to drug therapy. Adv Drug Deliv Rev 56:133–150

    Google Scholar 

  • Dassa E, Bouige P (2001) The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152:211–229

    CAS  PubMed  Google Scholar 

  • Dayan G, Jault JM, Baubichon-Cortay H, Baggetto LG, Renoir JM, Baulieu EE, Gros P, Di Pietro A (1997) Binding of steroid modulators to recombinant cytosolic domain from mouse P-glycoprotein in close proximity to the ATP site. Biochemistry 36:15208–15215

    CAS  PubMed  Google Scholar 

  • Dean M, Rzhetsky A, Allikmets R (2006) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11:1156–1166

    Google Scholar 

  • Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–15670

    CAS  PubMed  Google Scholar 

  • Ehrmann M, Ehrle R, Hofmann E, Boos W, Schlosser A (1998) The ABC maltose transporter. Mol Microbiol 29:685–694

    CAS  PubMed  Google Scholar 

  • Etian GD, Regev R, Oren G, Asaraf YG (1996) The role of passive trans bilayer drug movement in multidrug resistance and its modulation. J Biol Chem 271:12897–12902

    Google Scholar 

  • Fojo T, Bates S (2003) Strategies for reversing drug resistance. Oncogene 22:7512–7523

    CAS  PubMed  Google Scholar 

  • Fracasso PM (2001) Overcoming drug resistance in ovarian carcinoma. Curr Oncol Rep 3:19–26

    CAS  PubMed  Google Scholar 

  • Gerlach J, Endicott J, Juranka P, Henderson G, Sarangi F, Deuchars K, Ling V (1986) Homology between P-glycoprotein and a bacterial hemolysin transport protein suggests a model for multidrug resistance. Nature 324:485–489

    CAS  PubMed  Google Scholar 

  • Hayeshi R, Masimirembwa C, Mukanganyama S, Ungell ALB (2006) The potential inhibitory effect of antiparasitic drugs and natural products on p-glycoprotein mediated efflux. Eur J Pharm Sci 29:70–81

    CAS  PubMed  Google Scholar 

  • Hendrickse NH, Franssen EJF, van der Graaf WTA, Vaalburg W, de Vries EGE (1999) Visualization of multidrug resistance in vivo. Eur J Nucl Med 25:283–293

    Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    CAS  PubMed  Google Scholar 

  • Higgins CF (2007) Multiple molecular mechanisms for multidrug resistance transporters. Nature 446:749–757

    CAS  PubMed  Google Scholar 

  • Holland IB, Blight MA (1999) ABC-ATPases, adaptable energy generators fueling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J Mol Biol 293:381–399

    CAS  PubMed  Google Scholar 

  • Hyde SC, Emsley P, Harthshorn MJ, Mimmack MM, Gileadi U, Pearce SR, Gallager MP, Gill DR, Hubbard RE, Higgins CF (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346:362–365

    CAS  PubMed  Google Scholar 

  • Jones PM, George AM (2005) Multidrug resistance in parasites: ABC transporters, p-glycoproteins and molecular modeling. Int J Parasitol 35:555–566

    CAS  PubMed  Google Scholar 

  • Kamau SW, Kramer SD, Matja G, Wunderli-Allenspach H (2005) Effect of the modulation of the membrane lipid composition on the localization and function of P-glycoprotein in mdr1-mdck cells. In Vitro Cell Dev Biol Anim 41:207–216

    CAS  PubMed  Google Scholar 

  • Karászi E, Jakab K, Homolya L, Szakács G, Holló Z, Telek B, Kiss A, Rejtô L, Nahajevsky S, Sarkadi B, Kappelmayer J (2001) Calcein assay for multidrug resistance reliably predicts therapy response and survival rate in acute myeloid leukaemia. Br J Haematol 112:308–314

    PubMed  Google Scholar 

  • Kennedy M, Cortés-Selva F, Pérez Victoria JM, Jiménez IA, González AG, Muñoz OM, Gamarro F, Castanys S, Ravelo AG (2001) Chemosensitization of a multidrug resistant Leishmania tropica line by new sesquiterpenes from Maytenus magellanica and Maytenus chubutensis. J Med Chem 44:4668–4676

    CAS  PubMed  Google Scholar 

  • Kitagawa S (2006) Inhibitory effects of polyphenols on P-glycoprotein-mediated transport. Biol Pharm Bull 29:1–6

    CAS  PubMed  Google Scholar 

  • Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11:265–283

    CAS  PubMed  Google Scholar 

  • Klokouzas A, Shahi S, Hladky SB, Barrand MA, van Veen HW (2003) ABC transporters and drug resistance in parasitic protozoa. Int J Antimicrob Agents 22:301–317

    CAS  PubMed  Google Scholar 

  • Lage H (2003) ABC-transporters: implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Agents 22:188–199

    CAS  PubMed  Google Scholar 

  • Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8:411–424

    CAS  PubMed  Google Scholar 

  • Lomovskaya O, Watkins WJ (2001) Efflux pumps: their role in antibacterial drug discovery. Curr Med Chem 8:1699–1771

    CAS  PubMed  Google Scholar 

  • Lomovskaya O, Warren mS, Lee A, Galazzo J, Fronko R, Lee M, Blais J, Cho D, Chanberland S, Renau T (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in P. aeruginosa: novel agents for combination. Antimicrob Agents Chemother 45:105–116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Machuca C, Rodríguez A, Herrera M, Silva S, Ponte-Sucre A (2006) Metabolic adaptations induced by resistance to glibenclamide in Leishmania amazonensis. Exp Parasitol 114:1–9

    CAS  PubMed  Google Scholar 

  • Maliepaard M, van Gastelen MA, de Jong LA, Pluim D, van Waardenburg RC, Ruevekamp-Helmers MC, Floot BG, Schellens JH (1999) Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 59:4559–4563

    CAS  PubMed  Google Scholar 

  • Mallea M, Mahamoud A, Chevalier J, Albert Franco S, Brounant P, Barbe J, Pages JM (2003) Alkylaminoquinolones inhibit the antibiotic efflux pump in multidrug-resistant clinical isolates. Biochem J 376:801–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKeegan KS, Borges-Walmsley MI, Walmsley AR (2004) Structural understanding of efflux-mediated drug resistance: potential routes to efflux inhibition. Curr Opin Pharmacol 4:479–486

    CAS  PubMed  Google Scholar 

  • Mullin S, Mani N, Grossman TH (2004) Inhibition of antibiotic efflux in bacteria by the novel multidrug resistance inhibitors biricodar (VX-710) and Timcodar (VX-853). Antimicrob Agents Chemother 48:4171–4176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson ML, Levy SB (1999) Reversal of tetracycline resistance mediated by different bacterial tetracycline determinants by an inhibitor of the Tet(B) antiport protein. Antimicrob Agents Chemother 43:1719–1724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen IT (2003) Multidrug efflux pumps and resistance: regulation and evolution. Curr Opin Microbiol 6:446–451

    CAS  PubMed  Google Scholar 

  • Pedersen PL (2005) Transport ATPases: structure, motors, mechanism and medicine: a brief overview. J Bioenerg Biomembr 37:349–357

    CAS  PubMed  Google Scholar 

  • Ponte-Sucre A, Campos Y, Vasquez J, Moll H, Mendoza-León A (1997) Sensitivity of Leishmania spp. to glibenclamide and 4-aminopyridine: a tool for the study of drug resistance development. Mem Inst Oswaldo Cruz 92:601–606

    CAS  PubMed  Google Scholar 

  • Pradines B, Albert-Franco S, Houdoin C, Mosnier J, Santelli-Rouvier C, Papa V, Rogier C, Fusai T, Barbe J, Parzy D (2002) In vitro reversal of chloroquine resistance in Plasmodium falciparum with dihydroethanoanthracene derivatives. Am J Trop Med Hyg 66:661–666

    CAS  PubMed  Google Scholar 

  • Saurin W, Hofnung M, Dassa E (1999) Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 48:22–41

    CAS  PubMed  Google Scholar 

  • Seelig A (1998) A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem 251:252–261

    CAS  PubMed  Google Scholar 

  • Serrano-Martin X, Payares G, Mendoza-León A (2006) Glibenclamide, a blocker of K+(ATP) channels, shows antileishmanial activity in experimental murine cutaneous leishmaniasis. Antimicrob Agents Chemother 50:4214–4216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheps JA, Ralph S, Zhao Z-Y, Baillie DL, Ling V (2004) The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biol 5:R15 (URL: http://genomebiology.com/2004/5/3/R15)

    PubMed  PubMed Central  Google Scholar 

  • Sheps JA, Ling V (2006) Preface: the concept and consequences of multidrug resistance. Pflugers Arch Eur J Physiol 453:545–553

    Google Scholar 

  • Shilling RA, Venter H, Velamakanni S, Bapna A, Woebking B, Shahi S, van Veen HW (2006) New light on multidrug binding by and ATP-binding-cassette transporter. Trends Pharmacol Sci 27:195–203

    CAS  PubMed  Google Scholar 

  • Silva N, Camacho N, Figarella K, Ponte-Sucre A (2004) Cell differentiation and infectivity of Leishmania mexicana are inhibited in an ABC-transporter blocker resistant strain. Parasitology 128:629–634

    CAS  PubMed  Google Scholar 

  • Stouch TR, Gudmundsson O (2002) Progress in understanding the structure–activity relationships of P-glycoprotein. Adv Drug Deliv Rev 54:315–328

    CAS  PubMed  Google Scholar 

  • Sun J, He ZG, Cheng G, Wang SJ, Hao XH, Zou MJ (2004) Multidrug resistance P-glycoprotein: crucial significance in drug disposition and interaction. Med Sci Monit 10:RA5–RA14

    CAS  PubMed  Google Scholar 

  • Thomas PM, Cote GJ, Wohllk N, Mathew PM, Gagel RF (1996) The molecular basis for familial persistent hyperinsulinemic hypoglycemia of infancy. Proc Assoc Am Physicians 108:14–19

    CAS  PubMed  Google Scholar 

  • Uzcátegui NL, Figarella K, Camacho N, Ponte-Sucre A (2005) Substrate preferences and glucose uptake in glibenclamide-resistant Leishmania parasites. Comp Biochem Physiol 140:395–402

    Google Scholar 

  • van der Heide T, Poolman B (2002) ABC transporters: one, two or four extracytoplasmic substrate binding sites? EMBO Rep 3:938–943

    PubMed  PubMed Central  Google Scholar 

  • van Herwaarden AE, Schinkel AH (2006) The function of breast cancer resistance protein in epithelial barriers, stem cells and milk secretion of drugs and xenotoxins. Trends Pharmacol Sci 27:10–16

    PubMed  Google Scholar 

  • van Veen HW, Konings WN (1997) Multidrug transporters from bacteria to man: similarities in structure and function. Semin Cancer Biol 8:183–191

    PubMed  Google Scholar 

  • van Veen HW (2001) Towards the molecular mechanism of prokaryotic and eukaryotic multidrug transporters. Semin Cell Dev Biol 12:239–245

    PubMed  Google Scholar 

  • Varma MV, Ashokraj Y, Dey CS, Panchagnula R (2003) P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. Pharmacol Res 48:347–359

    CAS  PubMed  Google Scholar 

  • Wiese M, Pajeva IK (2001) Structure–activity of multidrug resistance reversers. Curr Med Chem 8:685–713

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful for the financial support from the Venezuelan CDCH-UCV. I am grateful for the invitation of Prof. A. Steinbuchel to write this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Ponte-Sucre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponte-Sucre, A. Availability and applications of ATP-binding cassette (ABC) transporter blockers. Appl Microbiol Biotechnol 76, 279–286 (2007). https://doi.org/10.1007/s00253-007-1017-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1017-6

Keywords

Navigation