Skip to main content

Real-time Capillary-level Microchannel Flow Analysis Using a Full-pixel Frame-straddling Micro-PIV System

  • Chapter
  • First Online:
Hyper Bio Assembler for 3D Cellular Systems

Abstract

We develop a high throughput microscopic particle image velocimetry system that can compute flow vectors of 512 × 512 pixels in real time at 500 fps for fast microchannel flow. To compute many flow vectors at high speed, a gradient-based optical flow method is accelerated by calculating integral images of product sums of image brightness gradients and implementing them as parallel processes on a GPU-based frame-straddling high-frame-rate (HFR) vision system. Thus, the HFR vision system, having two cameras with a time delay function, can simultaneously compute hundreds of millions of flow vectors in a second, assuming a small image displacement between frames with a submillisecond delay. We conducted real-time flow measurement experiments to quantify capillary-level microchannel flow in a microfluidic chip with many 7-μm-width channels, and verified the high throughput performance of our system for long-term microchannel blood flow analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25(4):316–319

    Article  Google Scholar 

  2. Mielnik MM, Saetran LR (2005) Micro particle image velocimetry: an overview. Exp Fluids 38(3):1–8

    Google Scholar 

  3. Meinhart CD, Wereley ST, Santiago JG (1999) PIV measurements of a microchannel flow. Exp Fluids 27(5):414–419

    Article  Google Scholar 

  4. Sharp KV, Adrian RJ (2004) Transition from laminar to turbulent flow in liquid filled microtubes. Exp Fluids 36(5):741–747

    Article  Google Scholar 

  5. Klank H, Goranovic G, Kutter JP, Gjelstrup H, Michelsen J, Westergaard CH (2002) PIV measurements in a microfluidic 3D sheathing structure with three-dimensional flow behaviour. J Micromech Microeng 12(6):862–869

    Article  Google Scholar 

  6. Meinhart CD, Zhang H (2000) The flow structure inside a microfabricated inkjet printhead. J Microelectromech Syst 9(1):67–75

    Article  Google Scholar 

  7. Sugii Y, Nishio S, Okamoto K (2002) In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion. Physiol Meas 23(2):403–416

    Article  Google Scholar 

  8. Chiu J, Chen C, Lee P, Yang C, Chuang H, Chien S, Usami S (2003) Analysis of the effect of distributed flow on monocytic adhesion to endothelial cells. J Biomech 36(12):1883–1895

    Article  Google Scholar 

  9. Kim G, Lee S (2006) X-ray PIV measurements of blood flows without tracer particles. Exp Fluids 41(2):195–200

    Article  Google Scholar 

  10. Vennemann P, Kiger KT, Lindken R, Groenendijk BCW, Stekelenburg-DeVos S, Ten Hagen TLM, Ursem NTC, Poelmann RE, Westerweel J, Hierck BP (2006) In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. J Biomech 39(7):1191–1200

    Article  Google Scholar 

  11. Lima R, Wada S, Tanaka S, Takeda M, Ishikawa T, Tsubota K, Imai Y, Yamaguchi T (2008) In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed Microdevices 10(2):153–167

    Article  Google Scholar 

  12. Hart DP (2000) Super-resolution PIV by recursive local-correlation. J Visual 3(2):13–22

    Article  Google Scholar 

  13. Sugii Y, Nishio S, Okuno T, Okamoto K (2000) highly accurate iterative PIV technique using a gradient method. Meas Sci Technol 11(12):1666–1673

    Article  Google Scholar 

  14. Kobatake M, Takaki T, Ishii I (2012) A real-time micro-PIV system using frame-straddling high-speed vision. Proceedings of the IEEE International Conference Robotics Automation pp 397–402, St. Paul, Minnesota, May 2012

    Google Scholar 

  15. Ishii I, Tatebe T, Gu Q, Moriue Y, Takaki T, Tajima K (2010) 2000 fps real-time vision system with high-frame-rate video recording. Proceedings of IEEE International Conference on Robotics and Automation pp 1536–1541, Anchorage, Alaska, May 2010

    Google Scholar 

  16. Kikuchi Y, Sato K, Mizuguchi Y (1994) Modified cell flow microchannels in a single-crystal silicon substrate and flow behavior of blood cells. Microvasc Res 47(1):126–139

    Article  Google Scholar 

  17. Lucas B, Kanade T (1981) An iterative image registration technique with applications in stereo vision. Proceedings of the DARPA Image Understanding Workshop pp 121–130, Washington DC, April 1981

    Google Scholar 

  18. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 511–518, Kauai, Hawaii, December 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idaku Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ishii, I., Aoyama, T. (2015). Real-time Capillary-level Microchannel Flow Analysis Using a Full-pixel Frame-straddling Micro-PIV System. In: Arai, T., Arai, F., Yamato, M. (eds) Hyper Bio Assembler for 3D Cellular Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55297-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55297-0_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55296-3

  • Online ISBN: 978-4-431-55297-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics