Skip to main content

Abstract

Hemopexin (Hpx) is an abundant plasma protein binding to heme with the highest known affinity. A vasoactive plasma factor 100KF was originally found to be closely related to the pathogenesis of minimal change nephrotic syndrome (MCNS). 100KF was later found to be Hpx. The active isoform of Hpx is increased in children with MCNS. It has been shown to have serine protease activity and have dramatic effects on the glomerular filtration barrier. Hpx reduces sialoglycoproteins in glomerular extracellular matrix and glycocalyx on the surface of glomerular endothelial cells associated with an increase in the flux of albumin. In vivo, Hpx induced reversible proteinuria in rats, and the glomeruli had podocyte foot process effacement and reduced anionic sites along the lamina rara interna in the basement membrane similar to human MCNS. In vitro, podocytes showed dramatic reorganization of actin with loss of stress fibers after Hpx treatment. This did not occur in nephrin-deficient podocytes or in cells that do not express nephrin, specifically human glomerular endothelial cells, fibroblasts, and HEK293 cells, indicating that the Hpx effect on actin is dependent on the expression of nephrin and followed by RhoA activation and protein kinase B phosphorylation at S473 in the downstream intracellular signaling pathway. The effects were reversible and were inhibited by preincubation with human plasma and serine protease inhibitors. The possibility of proteases is discussed as circulating factors causing MCNS. The circulating inhibitory factors for active Hpx in normal physiology or the mechanisms of Hpx activation in the disease are unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delanghe JR, Langlois MR. Hemopexin: a review of biological aspects and the role in laboratory medicine. Clin Chim Acta. 2001;312:13–23.

    Article  CAS  PubMed  Google Scholar 

  2. Muller-Eberhard U. Hemopexin. Methods Enzymol. 1988;163:536–65.

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi N, Takahashi Y, Putnam FW. Complete amino acid sequence of human hemopexin, the heme-binding protein of serum. Proc Natl Acad Sci U S A. 1985;82:73–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Smith A. Role of redox-reactive metals in the regulation of the metallothionein and heme oxygenase genes by heme and hemopexin. In: Ferreira GC, Moura JJG, Franco R, editors. Iron metabolism. Weinheim: Wiley-VCH; 1999. p. 65–92.

    Chapter  Google Scholar 

  5. Naylor SL, Altruda F, Marshall A, Silengo L, Bowman BH. Hemopexin is localized to human chromosome 11. Somat Cell Mol Genet. 1987;13:355–8.

    Article  CAS  PubMed  Google Scholar 

  6. Law ML, Cai GY, Hartz JA, Jones C, Kao FT. The hemopexin gene maps to the same location as the beta-globin gene cluster on human chromosome 11. Genomics. 1988;3:48–52.

    Article  CAS  PubMed  Google Scholar 

  7. Altruda F, Poli V, Restagno G, Silengo L. Structure of the human hemopexin gene and evidence for intron-mediated evolution. J Mol Evol. 1988;27:102–8.

    Article  CAS  PubMed  Google Scholar 

  8. Thorbecke GJ, Liem HH, Knight S, Cox K, Muller-Eberhard U. Sites of formation of the serum proteins transferrin and hemopexin. J Clin Invest. 1973;52:725–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Immenschuh S, Nagae Y, Satoh H, Baumann H, Muller-Eberhard U. The rat and human hemopexin genes contain an identical interleukin-6 response element that is not a target of CAAT enhancer-binding protein isoforms. J Biol Chem. 1994;269:12654–61.

    CAS  PubMed  Google Scholar 

  10. Immenschuh S, Song DX, Satoh H, Muller-Eberhard U. The type II hemopexin interleukin-6 response element predominates the transcriptional regulation of the hemopexin acute phase responsiveness. Biochem Biophys Res Commun. 1995;207:202–8.

    Article  CAS  PubMed  Google Scholar 

  11. Hunt RC, Hunt DM, Gaur N, Smith A. Hemopexin in the human retina: protection of the retina against heme-mediated toxicity. J Cell Physiol. 1996;168:71–80.

    Article  CAS  PubMed  Google Scholar 

  12. Swerts JP, Soula C, Sagot Y, Guinaudy MJ, Guillemot JC, Ferrara P, et al. Hemopexin is synthesized in peripheral nerves but not in central nervous system and accumulates after axotomy. J Biol Chem. 1992;267:10596–600.

    CAS  PubMed  Google Scholar 

  13. Camborieux L, Julia V, Pipy B, Swerts JP. Respective roles of inflammation and axonal breakdown in the regulation of peripheral nerve hemopexin: an analysis in rats and in C57BL/Wlds mice. J Neuroimmunol. 2000;107:29–41.

    Article  CAS  PubMed  Google Scholar 

  14. Kapojos JJ, van den Berg A, van Goor H, te Loo MW, Poelstra K, Borghuis T, et al. Production of hemopexin by TNF-alpha stimulated human mesangial cells. Kidney Int. 2003;63:1681–6.

    Article  CAS  PubMed  Google Scholar 

  15. Smith A, Morgan WT. Haem transport to the liver by haemopexin. Receptor-mediated uptake with recycling of the protein. Biochem J. 1979;182:47–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Smith A, Morgan WT. Haemopexin-mediated transport of heme into isolated rat hepatocytes. J Biol Chem. 1981;256:10902–9.

    CAS  PubMed  Google Scholar 

  17. Smith A, Hunt RC. Hemopexin joins transferrin as representative members of a distinct class of receptor-mediated endocytic transport systems. Eur J Cell Biol. 1990;53:234–45.

    CAS  PubMed  Google Scholar 

  18. Thomas L. Haptoglobin hemopexin. In: Thomas L, editor. Clinical laboratory diagnostics. Frankfurt: TH-Books; 1998. p. 663–7.

    Google Scholar 

  19. Weeke B, Jarnum S. Serum concentration of 19 serum proteins in Crohn’s disease and ulcerative colitis. Gut. 1971;12:297–302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Johnson AM. Amino acids, peptides and proteins. In: Burtis CA, Ashwood EER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. St. Louis: Elsevier, Saunders Company; 2006. p. 533–95.

    Google Scholar 

  21. Bakker WW, van Luijk WHJ. Do circulating factors play a role in the pathogenesis of minimal change nephrotic syndrome. Pediatr Nephrol. 1989;3:341–9.

    Article  CAS  PubMed  Google Scholar 

  22. Bakker WW, Baller JFW, van Luijk WHJ. A kallikrein-like molecule and plasma vasoactivity in minimal change disease. Contrib Nephrol. 1988;67:31–6.

    Article  CAS  PubMed  Google Scholar 

  23. Cheung PK, Boes A, Dijkhuis FWJ, Klok PA, Bakker WW. Enhanced glomerular permeability and minimal change disease like alterations of the rat kidney induced by a vasoactive human plasma factor. Kidney Int. 1995;47:1218.

    Google Scholar 

  24. Cheung PK, Klok PA, Bakker WW. Minimal change-like glomerular alterations induced by a human plasma factor. Nephron. 1996;74:586–93.

    Article  CAS  PubMed  Google Scholar 

  25. Cheung PK, Baller JF, Bakker WW. Impairment of endothelial and subendothelial sites by a circulating plasma factor associated with minimal change disease. Nephrol Dial Transplant. 1996;11:2185–91.

    Article  CAS  PubMed  Google Scholar 

  26. Vernier RL. Primary (idiopathic) nephrotic syndrome. In: Holliday MA, Barratt TM, Vernier RL, editors. Paediatric nephrology. Baltimore: Williams and Wilkins; 1987. p. 445–56.

    Google Scholar 

  27. Cheung PK, Stulp B, Immenschuh S, Borghuis T, Baller JF, Bakker WW. Is 100KF an isoform of hemopexin? Immunochemical characterization of the vasoactive plasma factor 100KF. J Am Soc Nephrol. 1999;10:1700–8.

    CAS  PubMed  Google Scholar 

  28. Mauk MR, Smith A, Mauk AG. An alternative view of the proposed alternative activities of hemopexin. Protein Sci. 2011;20:791–805.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bakker WW, Borghuis T, Harmsen MC, van den Berg A, Kema IP, Niezen KE, et al. Protease activity of plasma hemopexin. Kidney Int. 2005;68:603–10.

    Article  CAS  PubMed  Google Scholar 

  30. Cheung PK, Klok PA, Baller JF, Bakker WW. Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin. Kidney Int. 2000;57:1512–20.

    Article  CAS  PubMed  Google Scholar 

  31. Lennon R, Singh A, Welsh GI, Coward RJ, Satchell S, Ni L, et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol. 2008;19:2140–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Singh A, Satchell SC, Neal CR, McKenzie EA, Tooke JE, Mathieson PW. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J Am Soc Nephrol. 2007;18:2885–93.

    Article  CAS  PubMed  Google Scholar 

  33. Stambolic V, Woodgett JR. Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol. 2006;16:461–6.

    Article  CAS  PubMed  Google Scholar 

  34. Huber TB, Hartleben B, Kim J, Schmidts M, Schermer B, Keil A, et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol Cell Biol. 2003;23:4917–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Piccard H, van den Steen PE, Opdenakker G. Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J Leukoc Biol. 2007;81:870–92.

    Article  CAS  PubMed  Google Scholar 

  36. Goerge T, Barg A, Schnaeker EM, Poppelmann B, Shpacovitch V, Rattenholl A, et al. Tumor-derived matrix metalloproteinase-1 targets endothelial proteinase-activated receptor 1 promoting endothelial cell activation. Cancer Res. 2006;66:7766–74.

    Article  CAS  PubMed  Google Scholar 

  37. Harris JJ, McCarthy HJ, Ni L, Wherlock M, Kang HG, Wetzels JF, et al. Active proteases in nephrotic plasma lead to a podocin-dependent phosphorylation of VASP in podocytes via protease activated receptor-1. J Pathol. 2013;229:660–71.

    Article  CAS  PubMed  Google Scholar 

  38. Bakker WW, van Dael CM, Pierik LJ, van Wijk JA, Nauta J, Borghuis T, et al. Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr Nephrol. 2005;20:1410–5.

    Article  PubMed  Google Scholar 

  39. Andersen RF, Palmfeldt J, Jespersen B, Gregersen N, Rittig S. Plasma and urine proteomic profiles in childhood idiopathic nephrotic syndrome. Proteomics Clin Appl. 2012;6:382–93.

    Article  CAS  PubMed  Google Scholar 

  40. Kapojos JJ, Poelstra K, Borghuis T, Banas B, Bakker WW. Regulation of plasma hemopexin activity by stimulated endothelial or mesangial cells. Nephron Physiol. 2004;96:1–10.

    Article  Google Scholar 

  41. Kapojos JJ, van den Berg A, Borghuis T, Banas B, Huitema S, Poelstra K, et al. Enhanced ecto-apyrase activity of stimulated endothelial or mesangial cells is downregulated by glucocorticoids in vitro. Eur J Pharmacol. 2004;501:191–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bakr A, Shokeir M, El-Chenawi F, El-Husseni F, Abdel-Rahman A, El-Ashry R. Tumor necrosis factor-alpha production from mononuclear cells in nephrotic syndrome. Pediatr Nephrol. 2003;18:516–20.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moin A. Saleem F.R.C.P., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kobayashi, Y., Saleem, M.A. (2016). Hemopexin in Minimal Change Nephrotic Syndrome. In: Kaneko, K. (eds) Molecular Mechanisms in the Pathogenesis of Idiopathic Nephrotic Syndrome. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55270-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55270-3_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55269-7

  • Online ISBN: 978-4-431-55270-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics