Skip to main content

Planktonic Ciliates: Diverse Ecological Function in Seawater

  • Chapter
Marine Protists

Abstract

Planktonic ciliates are a representative group of microzooplankton, which play important roles in planktonic food webs. Based on results in previous various studies, quantitative information on roles as consumers of pico- and nanoplankton, as nutrient regenerators and as prey for various marine organisms were reviewed. The role as grazers of bacteria may be limited in small ciliates while autotrophic picoplankton is an essential food source for ciliates and can sustain populations of ciliates in oligotrophic waters. The grazing impact of ciliates is considered to greatly influence population dynamics of nanoplankton. Feeding responses of meso- and macrozooplankton suggested that ciliates become an essential food source for them. These findings show that ciliates play an important role in intermediation of energy flow from pico- and nanoplankton to larger plankton feeders. In addition, nutrient regeneration by ciliates is one of the important resources to support the production system not only in oligotrophic waters but also in other various waters. Furthermore, ciliates play roles as grazers for some harmful algal bloom species; the grazing impact may influence development and decay of the blooms. Since ciliates can also become food sources for bivalves and for polyp and ephyra stages of the moon jellyfish Aurelia aurita, they possibly contribute to production of bivalve aquaculture and occurrence of jellyfish blooms. These findings support that ciliates have diverse ecological functions in planktonic food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Admiraal W, Venekamp LAH (1986) Significance of tintinnid grazing during blooms of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth J Sea Res 20:61–66

    Article  Google Scholar 

  • Albright LJ, Sherr EB, Sherr BF, Fallon RD (1987) Grazing of ciliated protozoa on free and particle-attached bacteria. Mar Ecol Prog Ser 38:125–129

    Article  Google Scholar 

  • Andersen T, Schartau AKL, Paasche E (1991) Quantifying external and internal nitrogen and phosphorus pools, as well as nitrogen and phosphorus supplied through remineralization, in coastal marine plankton by means of a dilution technique. Mar Ecol Prog Ser 69:67–80

    Article  CAS  Google Scholar 

  • Archer SD, Verity PG, Stefels J (2000) Impact of microzooplankton on the progression and fate of the spring bloom in fjords of northern Norway. Aquat Microb Ecol 22:27–41

    Article  Google Scholar 

  • Atkinson A (1996) Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey populations. Mar Ecol Prog Ser 130:85–96

    Article  Google Scholar 

  • Atkinson A, Snÿder R (1997) Krill-copepod interactions at South Georgia, Antarctica, I. Omnivory by Euphausia superba. Mar Ecol Prog Ser 160:63–76

    Article  Google Scholar 

  • Ayukai T (1987) Predation by Acartia clausi (Copepoda: Calanoida) on two species of tintinnids. Mar Microb Food Web 2:45–52

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-colunn microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Batten SD, Fileman ES, Halvorsen E (2001) The contribution of microzooplankton to the diet of mesozooplankton in an upwelling filament off the north west coast of Spain. Prog Oceanogr 51:385–398

    Article  Google Scholar 

  • Bernard C, Rassoulzadegan F (1993) The role of picoplankton (cyanobacteria and plastidic picoflagellates) in the diet of tintinnids. J Plankton Res 15:361–373

    Article  Google Scholar 

  • Broglio E, Saiz E, Calbet A et al (2004) Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). Aquat Microb Ecol 35:65–78

    Article  Google Scholar 

  • Burkholder JM, Glasgow HB (1997) Pfiesteria piscicida and other Pfiesteria-like dinoflagellates: behavior, impacts, and environmental controls. Limnol Oceanogr 42:1052–1075

    Article  Google Scholar 

  • Burkill PH (1982) Ciliates and other microplankton components of a nearshore food-web: standing stocks and production processes. Ann Inst Oceanogr Paris 58(S):335–350

    Google Scholar 

  • Buskey EJ, Stoecker DK (1989) Behavioral responses of the marine tintinnid Favella sp. to phytoplankton: influence of chemical mechanical and photic stimuli. J Exp Mar Biol Ecol 132:1–16

    Article  Google Scholar 

  • Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49(1):51–57

    Article  CAS  Google Scholar 

  • Calbet A, Saiz E (2005) The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol 38:157–167

    Article  Google Scholar 

  • Calbet A, Broglio E, Saiz E et al (2002) Low grazing impact of mesozooplankton on the microbial communities of the Alboran Sea: a possible case of inhibitory effects by the toxic dinoflagellate Gymnodinium catenatum. Aquat Microb Ecol 26:235–246

    Article  Google Scholar 

  • Capiriulo GM (1990) Feeding-related ecology of marine protozoa. In: Capriulo GM (ed) Ecology of marine protozoa. Oxford University Press, New York, pp 186–259

    Google Scholar 

  • Capriulo GM (1982) Feeding of field collected tintinnid micro-zooplankton on natural food. Mar Biol 71:73–86

    Article  Google Scholar 

  • Capriulo GM, Carpenter EJ (1980) Grazing by 35 to 202 μm micro-zooplankton in Long Island Sound. Mar Biol 56:319–326

    Article  Google Scholar 

  • Capriulo GM, Carpenter EJ (1983) Abundance species composition and feeding impact of tintinnid micro-zooplankton in central Long Island Sound. Mar Ecol Prog Ser 10:277–288

    Article  Google Scholar 

  • Carlsson P, Granéli E, Olsson P (1990) Grazer elimination through poisoning: one of the mechanisms behind Chrysochromulina polylepis blooms? In: Granéli E, Sundström B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier Science, New York, pp 116–122

    Google Scholar 

  • Caron DA, Goldman JC (1990) Protozoan nutrient regeneration. In: Capriulo GM (ed) Ecology of marine protozoa. Oxford Univ Press, New York, pp 283–306

    Google Scholar 

  • Caron DA, Lim EL, Kunze H et al (1989) Trophic interactions between nano- and microzooplankton and the “brown tide”. In: Cosper EM, Bricelj VM, Carpenter EJ (eds) Novel phytoplankton blooms. Springer, New York, pp 265–294

    Chapter  Google Scholar 

  • Castellani C, Irigoien X, Harris RP et al (2005) Feeding and egg production of Oithona similis in the North Atlantic. Mar Ecol Prog Ser 288:173–182

    Article  Google Scholar 

  • Christaki U, Dolan JR, Pelegri S et al (1998) Consumption of picoplankton-size particles by marine ciliates: effects of physiological state of the ciliate and particle quality. Limnol Oceanogr 43:458–464

    Article  Google Scholar 

  • Christaki U, Courties C, Joux F et al (2009) Community structure and trophic role of ciliates and heterotrophic nanoflagellates in Rhone River diluted mesoscale structures (NW Mediterranean Sea). Aquat Microb Ecol 57:263–277

    Article  Google Scholar 

  • Colin SP, Dam HG (2003) Effects of the toxic dinoflagellate Alexandrium fundyense on the copepod Acartia hudsonica: a test of the mechanisms that reduce ingestion rates. Mar Ecol Prog Ser 248:55–65

    Article  Google Scholar 

  • Dolan JR (1991) Microphagous ciliates in mesohaline Chesapeake Bay waters- estimates of growth rates and consumption by copepods. Mar Biol 111:303–309

    Article  Google Scholar 

  • Dolan JR, Marrasé C (1995) Planktonic ciliate distribution relative to a deep chlorophyll maximum: Catalan Sea, N.W. Mediterranean, June 1993. Deep Sea Res 42:1965–1987

    Article  Google Scholar 

  • Dolan JR, Vidussi F, Claustre H (1999) Planktonic ciliates in the Mediterranean Sea: longitudinal trends. Deep Sea Res І 46:2025–2039

    Article  Google Scholar 

  • Dolan J, Montagnes DJS, Agatha S et al (eds) (2013) The biology and ecology of tintinnid ciliates, model for marine plankton. Wiley-Blackwell, Chichester

    Google Scholar 

  • Duppuy C, Le Gall SL, Hartman HG et al (1999) Retention of ciliates and flagellates by the oyster Crassostrea gigas in French Atlantic coastal ponds: protists as a trophic link between bacterioplankton and benthic suspension-feeders. Mar Ecol Prog Ser 177:165–175

    Article  Google Scholar 

  • Dutz J, Peters J (2008) Importance and nutritional value of large ciliates for the reproduction of Acartia clausi during the post spring-bloom period in the North Sea. Aquat Microb Ecol 50:261–277

    Article  Google Scholar 

  • Epstein SS, Shiaris MP (1992) Size-selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates colorless flagellates and ciliates. Microb Ecol 23:211–225

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T (1980) Relation between particle size selection and clearance in suspension-feeding ciliates. Limnol Oceanogr 25:733–738

    Article  Google Scholar 

  • Fenchel T (1987) Ecology of protozoa: the biology of free-living phagotrophic protists. Springer, Berlin

    Google Scholar 

  • Fenchel T (1990) Adaptive significance of polymorphic life cycles in protozoa: responses to starvation and refeeding in two species or marine ciliates. J Exp Mar Biol Ecol 136:159–177

    Article  Google Scholar 

  • Fenchel T, Jonsson PR (1988) The functional biology of Strombidium sulcatum a marine oligotrich ciliate (Ciliophora Oligotrichina). Mar Ecol Prog Ser 48:1–15

    Article  Google Scholar 

  • Fessenden L, Cowles TJ (1994) Copepod predation on phagotrophic ciliates in Oregon coastal waters. Mar Ecol Prog Ser 107:103–111

    Article  Google Scholar 

  • Figueiredo GM, Montagnes DJS, Nash RDM (2009) The importance of protozooplankton as prey for copepods in the coastal areas of the central Irish Sea. Hydrobiologia 628:227–239

    Article  Google Scholar 

  • Gallegos CL (1989) Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: nonlinear feeding kinetics. Mar Ecol Prog Ser 57:23–33

    Article  Google Scholar 

  • Gifford DJ (1985) Laboratory culture of marine planktonic oligotrichs (Ciliophora Oligotrichida). Mar Ecol Prog Ser 23:257–267

    Article  Google Scholar 

  • Gifford DJ (1993) Protozoa in the diets of Neocalanus spp. in the oceanic subarctic Pacific Ocean. Prog Oceanogr 32:223–237

    Article  Google Scholar 

  • Gifford DJ, Dagg MJ (1988) Feeding of the estuarine copepod Acartia tonsa Dana: carnivory vs. herbivory in natural microplankton assemblages. Bull Mar Sci 43:458–468

    Google Scholar 

  • Gifford DJ, Dagg MJ (1991) The microzooplankton-mesozooplankton link: consumption of planktonic protozoa by the calanoid copepods Acartia tonsa Dana and Neocalanus plumchrus Murukawa. J Plankton Res 5:161–177

    Google Scholar 

  • Gonzalez JM, Sherr EB, Sherr BF (1990) Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol 56:583–589

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grattepanche JD, Vincent D, Breton E et al (2011) Microzooplankton herbivory during the diatom–Phaeocystis spring succession in the eastern English Channel. J Exp Mar Biol Ecol 404:87–97

    Article  Google Scholar 

  • Hansen PJ (1989) The red tide dinoflagellate Alexandrium tamarense: effects on behaviour and growth of a tintinnid ciliate. Mar Ecol Prog Ser 53:105–116

    Article  Google Scholar 

  • Hansen PJ (1995) Growth and grazing response of a ciliate feeding on the red tide dinoflagellate Gyrodinium aureolum in monoculture and in mixture with a non-toxic alga. Mar Ecol Prog Ser 121:65–72

    Article  Google Scholar 

  • Hansen PJ, Cembella AD, Moestrup Ø (1992) The marine dinoflagellate Alexandrium ostenfeldii: paralytic shellfish toxin concentration, composition, and toxicity to a tintinnid ciliate. J Phycol 28:597–603

    Article  CAS  Google Scholar 

  • Hansen FC, Reckermann M, Klein Breteler WCM et al (1993) Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar Ecol Prog Ser 102:51–57

    Article  Google Scholar 

  • Hansen B, Bjørnsen PK, Hansen PJ (1994) Prey size selection in planktonic zooplankton. Limnol Oceanogr 39:395–403

    Article  Google Scholar 

  • Hansen PJ, Bjørnsen PK, Hansen BW (1997) Zooplankton grazing and growth: scaling within the 2–2,000-μm body size range. Limnol Oceanogr 42(4):687–704

    Article  Google Scholar 

  • Havskum H, Hansen AS (1997) Importance of pigmented and colourless nano-sized protists as grazers on nanoplankton in a phosphate-depleted Norwegian fjord and in enclosures. Aquat Microb Ecol 12:139–151

    Article  Google Scholar 

  • Heinbokel JF (1978) Studies on the functional role of tintinnids in the Southern California Bight. Ι. Grazing and growth rates in laboratory cultures. Mar Biol 47:177–189

    Article  Google Scholar 

  • Heinbokel JF, Beers JR (1979) Studies on the functional role of tintinnids in the Southern California Bight. III. Grazing impact of natural assemblages. Mar Biol 52:23–32

    Article  Google Scholar 

  • Hollibaugh JT, Fuhrman JA, Azam F (1980) Radioactively labeling of natural assemblages of bacterioplankton for use in trophic studies. Limnol Oceanogr 25:172–181

    Article  CAS  Google Scholar 

  • Ichinotsuka D, Ueno H, Nakano S (2006) Relative importance of nanoflagellates and ciliates as consumers of bacteria in a coastal sea area dominated by oligotrichous Strombidium and Strobilidium. Aquat Microb Ecol 42:139–147

    Article  Google Scholar 

  • Jakobsen HH, Hansen PJ (1997) Prey size selection, grazing and growth response of the small heterotrophic dinoflagellate Gymnodinium sp. and the ciliate Balanion comatum – a comparative study. Mar Ecol Prog Ser 158:75–86

    Article  Google Scholar 

  • Jakobsen HH, Tang KW (2002) Effects of protozoan grazing on colony formation in Phaeocystis globosa (Prymnesiophyceae) and the potential costs and benefits. Aquat Microb Ecol 27:261–273

    Article  Google Scholar 

  • James MR, Hall J, Barrett DP (1996) Grazing by protozoa in marine coastal and oceanic ecosystems off New Zealand. N Z J Mar Freshw Res 30:313–324

    Article  CAS  Google Scholar 

  • Jeong HJ (1999) The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J Eukaryot Microbiol 46:390–396

    Article  Google Scholar 

  • Jeong HJ, Shim JH, Lee CW et al (1999) Growth and grazing rates of the marine planktonic ciliate Strombidinopsis sp. on red-tide and toxic dinoflagellate. J Eukaryot Microbiol 46:69–76

    Article  Google Scholar 

  • Jeong HJ, Yoo YD, Kim JS et al (2004) Feeding by the marine planktonic ciliate Strombidinopsis jeokjo on common heterotrophic dinoflagellates. Aquat Microb Ecol 36:181–187

    Article  Google Scholar 

  • Jeong HJ, Kim JS, Song JY et al (2007) Feeding by protists and copepods on the heterotrophic dinoflagellates Pfiesteria piscicida, Stoeckeria algicida, and Luciella masanensis. Mar Ecol Prog Ser 349:199–211

    Article  Google Scholar 

  • Jeong HJ, Kim JS, Yoo YD et al (2008) Control of the harmful alga Cochlodinium polykrikoides by the naked ciliate Strombidinopsis jeokjo in mesocosm enclosures. Harmful Algae 7:368–377

    Article  Google Scholar 

  • Jeong HJ, Yoo YD, Kim JS et al (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45(2):65–91

    Article  CAS  Google Scholar 

  • Jonsson PR (1986) Particle size selection feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina). Mar Ecol Prog Ser 33:265–277

    Article  Google Scholar 

  • Jonsson PR (1989) Vertical distribution of planktonic ciliates -an experimental analysis of swimming behaviour. Mar Ecol Prog Ser 52:39–53

    Article  Google Scholar 

  • Kamiyama T (1997) Growth and grazing responses of tintinnid ciliates feeding on the toxic dinoflagellate Heterocapsa circularisquama. Mar Biol 128:509–515

    Article  Google Scholar 

  • Kamiyama T (1999) Feeding ecology of marine ciliates in coastal waters. Bull Plankton Soc Jpn 46(2):113–133 (in Japanese with English abstract)

    Google Scholar 

  • Kamiyama T (2011a) Microzooplankton as a food source for the Pacific oyster Crassostrea gigas: seasonal variation in gut contents and food availability. Fish Sci 77:961–974

    Article  CAS  Google Scholar 

  • Kamiyama T (2011b) Planktonic ciliates as a food source for the scyphozoan Aurelia aurita (s.l.): feeding activity and assimilation of the polyp stage. J Exp Mar Biol Ecol 407:207–215

    Article  Google Scholar 

  • Kamiyama T (2012) Planktonic ciliates as food for the scyphozoan Aurelia aurita (s.l.): effects on asexual reproduction of the polyp stage. J Exp Mar Biol Ecol 445:21–28

    Article  Google Scholar 

  • Kamiyama T, Aizawa Y (1992) Effects of temperature and light on tintinnid excystment from marine sediments. Nippon Suisan Gakkaishi 58:877–884 (in Japanese with English abstract)

    Article  Google Scholar 

  • Kamiyama T, Arima S (1997) Lethal effect of the dinoflagellate Heterocapsa circularisquama upon the tintinnid ciliate Favella taraikaensis. Mar Ecol Prog Ser 160:27–33

    Article  Google Scholar 

  • Kamiyama T, Matsuyama Y (2005) Temporal changes in the ciliate assemblage and consecutive estimates of their grazing effect during the course of a Heterocapsa circularisquama bloom. J Plankton Res 27:303–311

    Article  Google Scholar 

  • Kamiyama T, Takayama H, Nishii Y et al (2001) Grazing impact of the field ciliate assemblage on a bloom of the toxic dinoflagellate Heterocapsa circularisquama. Plankton Biol Ecol 48:10–18

    Google Scholar 

  • Kamiyama T, Tsujino M, Matsuyama Y et al (2005) Growth and grazing rates of the tintinnid ciliate Favella taraikaensis on the toxic dinoflagellate Alexandrium tamarense. Mar Biol 147:989–997

    Article  Google Scholar 

  • Kang YS, Park MS (2003) Occurrence and food ingestion of the moon jellyfish (Scyphomoa: Ulmariidae: Aurelia aurita) in the southern coast of Korea in summer. J Korean Soc Oceanogr 8:199–202 (in Korean with English abstract)

    Google Scholar 

  • Karayanni H, Christaki U, Wambeke FV et al (2008) Heterotrophic nanoflagellate and ciliate bacterivorous activity and growth in the northeast Atlantic Ocean: a seasonal mesoscale study. Aquat Microb Ecol 51:169–181

    Article  Google Scholar 

  • Kim YO, Taniguchi A (1995) Excystment of the oligotrich ciliate Strombidium conicum. Aquat Microb Ecol 9:149–156

    Article  Google Scholar 

  • Kivi K, Setälä O (1995) Simultaneous measurement of food particle selection and clearance rates of planktonic oligotrich ciliates (Ciliophora: Oligotrichina). Mar Ecol Prog Ser 119:125–137

    Article  Google Scholar 

  • Klaas C (1997) Microprotozooplankton distribution and their potential grazing impact in the Antarctic Circumpolar Current. Deep Sea Res II 44:375–393

    Article  Google Scholar 

  • Kudoh S, Kanda J, Takahashi M (1990) Specific growth rates and grazing mortality of chroococcoid cyanobacteria Synechococcus spp. in pelagic surface waters in the sea. J Exp Mar Biol Ecol 142:201–212

    Article  Google Scholar 

  • Kuosa H (1990) Protozoan grazing on pico- and nanophytoplankton in the northern Baltic Sea: direct evidence from epifluorescence microscopy. Arch Hydrobiol 119:257–265

    Google Scholar 

  • Landry MR, Hassett RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67:283–288

    Article  Google Scholar 

  • Landry MR, Kirshtein J, Constantinou J (1995) A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific. Mar Ecol Prog Ser 120:53–63

    Article  Google Scholar 

  • Langdon CJ, Newell RIE (1990) Comparative utilization of detritus and bacteria as food sources by two bivalve suspension-feeders, the Crassostrea virginica and the mussel, Geukensia demissa. Mar Ecol Prog Ser 58:299–310

    Article  Google Scholar 

  • Laybourn-Parry J (1992) Protozoan plankton ecology. Chapman & Hall, London

    Google Scholar 

  • Le Gall S, Bel Hassen M, Le Gall P (1997) Ingestion of a bacterivorous ciliate by the oyster Crassostrea gigas: protozoa as a trophic link between picoplankton and benthic suspension-feeders. Mar Ecol Prog Ser 152:301–306

    Article  Google Scholar 

  • Liu H, Buskey EJ (2000) The exopolymer secretions (EPS) layer surrounding Aureoumbra lagunensis cells affects growth, grazing, and behavior of protozoa. Limnol Oceanogr 45(5):1187–1191

    Article  Google Scholar 

  • Lonsdale DJ, Cosper EM, Kim EM et al (1996) Food web interactions in the plankton of Long Island bays with preliminary observations on brown tide effects. Mar Ecol Prog Ser 134:247–263

    Article  Google Scholar 

  • Lonsdale DJ, Caron DA, Dennett MR, Schaffner R (2000) Predation by Oithona spp. on protozooplankton in the Ross Sea, Antarctica. Deep Sea Research II 47:3273–3283

    Article  Google Scholar 

  • McNamara ME, Lonsdale DJ, Cerrato RM (2013) Top-down control of mesozooplankton by adult Mnemiopsis leidyi influences microplankton abundance and composition enhancing prey conditions for larval ctenophores. Estuar Coast Shelf Sci 133(20):2–10

    Article  Google Scholar 

  • Menden-Deuer S, Lessard EJ, Satterberg J et al (2005) Growth rates and starvation survival of three species of the pallium-feeding, thecate dinoflagellate genus Protoperidinium. Aquat Microb Ecol 41:145–152

    Article  Google Scholar 

  • Montagnes DJS (1996) Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar Ecol Prog Ser 130:241–254

    Article  Google Scholar 

  • Montagnes DJS (2013) Ecophysiology and behavior of tintinnids. In: Dolan J, Montagnes DJS, Agatha S et al (eds) The biology and ecology of tintinnid ciliates, model for marine plankton. Wiley-Blackwell, Chichester, pp 85–121

    Google Scholar 

  • Montagnes DJS, Lessard EJ (1999) Population dynamics of the marine planktonic ciliate Strombidinopsis multiauris: its potential to control phytoplankton blooms. Aquat Microb Ecol 20:167–181

    Article  Google Scholar 

  • Montagnes DJS, Kimmance SA, Atkinson D (2003) Using Q10: can growth rates increase linearly with temperature? Aquat Microb Ecol 32:307–313

    Article  Google Scholar 

  • Müller H, Geller W (1993) Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Arch Hydrobiol 126:315–327

    Google Scholar 

  • Nakagawa Y, Ota T, Endo Y et al (2004) Importance of ciliates as prey of the euphausiid Euphausia pacifica in the NW North Pacific. Mar Ecol Prog Ser 271:261–266

    Article  Google Scholar 

  • Nakamura Y, Turner JT (1997) Predation and respiration by the small cyclopoid copepod Oithona similis. How important is feeding on ciliates and heterotrophic flagellates? J Plankton Res 9(9):1275–1288

    Article  Google Scholar 

  • Neuer S, Cowles TJ (1995) Comparative size-specific grazing rates in field populations of ciliates and dinoflagellates. Mar Ecol Prog Ser 125:259–267

    Article  Google Scholar 

  • Neuer S, Franks PJS (1993) Determination of ammonium uptake and regeneration rates using the seawater dilution method. Mar Biol 116:497–505

    Article  CAS  Google Scholar 

  • Nielsen TG, Kiørboe T (1991) Effects of a storm event on the structure of the pelagic food web with special emphasis on planktonic ciliates. J Plankton Res 31(1):35–51

    Article  Google Scholar 

  • Nielsen TG, Kiørboe T, Bjørnsen PK (1990) Effects of a Chrysochromulina polylepis subsurface bloom on the planktonic community. Mar Ecol Prog Ser 62:21–35

    Article  Google Scholar 

  • Nishibe Y, Kobari T, Ota T (2010) Feeding by the cyclopoid copepod Oithona similis on the microplankton assemblage in the Oyashio region during spring. Plankton Benthos Res 5(2):74–78

    Article  Google Scholar 

  • Ohman MD, Snyder RA (1991) Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnol Oceanogr 36(5):922–935

    Article  Google Scholar 

  • Ota T (2006) Diel periodicity of cell division and growth rates of marine oligotrich ciliates. Jpn J Protozool 39(1):69–75 (in Japanese with English abstract)

    Google Scholar 

  • Ota T, Taniguchi A (2001) Cell division and production of ciliate plankton. Kaiyo Month Spec 27:70–77 (in Japanese)

    Google Scholar 

  • Ota T, Taniguchi A (2003) Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and contribution to nutrient regeneration. Deep Sea Res II 50:423–442

    Article  CAS  Google Scholar 

  • Paasche E, Kristiansen S (1982) Ammonium regeneration by microzooplankton in the Oslofjord. Mar Biol 69:55–63

    Article  CAS  Google Scholar 

  • Paranjape MA, Gold K (1982) Cultivation of marine pelagic protozoa. Ann Inst Oceanogr Paris 58(S):143–150

    Google Scholar 

  • Pedersen MF, Hansen PJ (2003) Effects of high pH on the growth and survival of six marine heterotrophic protists. Mari Ecol Prog Ser 260:33–41

    Article  Google Scholar 

  • Pérez MT, Dolan JR, Rassoulzadegan F et al (1996) Predation on marine picoplankton populations examined with an ‘add-in’ approach. J Plankton Res 18:635–641

    Article  Google Scholar 

  • Pérez MT, Dolan JR, Fukai E (1997) Planktonic oligotrich ciliates in the NW Mediterranean: growth rates and consumption by copepods. Mar Ecol Prog Ser 155:89–101

    Article  Google Scholar 

  • Pérez MT, Dolan JR, Vidussi F et al (2000) Diel vertical distribution of planktonic ciliates within the surface layer of the NW Mediterranean (May 1995). Deep Sea Res 47:479–503

    Article  Google Scholar 

  • Pierce RW, Turner JT (1992) Ecology of planktonic ciliates in marine food webs. Rev Aquat Sci 6:139–181

    Google Scholar 

  • Pitta P, Giannakourou A, Christaki U (2001) Planktonic ciliates in the oligotrophic Mediterranean Sea: longitudinal trends of standing stocks, distributions and analysis of food vacuole contents. Aquat Microb Ecol 24:297–311

    Article  Google Scholar 

  • Pomeroy LR (1974) The ocean’s food web, a changing paradigm. BioScience 24:499–504

    Article  Google Scholar 

  • Purcell JE, Uye S, Lo W (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174

    Article  Google Scholar 

  • Rassoulzadegan F (1982) Dependence of grazing rate gross growth efficiency and food size range on temperature in a pelagic oligotrichous ciliate Lohmanniella spiralis Leeg fed on naturally occurring particulate matter. Ann Inst Oceanogr Paris 58:177–184

    Google Scholar 

  • Rassoulzadegan F, Etienne M (1981) Grazing rate of the tintinnid Stenosemella ventricosa (Clap & Lachm) Jorg on the spectrum of the naturally occurring particulate matter from a Mediterranean neritic area. Limnol Oceanogr 26:258–270

    Article  Google Scholar 

  • Rassoulzadegan F, Laval-Peuto M, Sheldon RW (1988) Partitioning of the food ration of marine ciliates between pico- and nanoplankton. Hydrobiologia 159:75–88

    Article  Google Scholar 

  • Rivier A, Brownlee DC, Sheldon RW et al (1985) Growth of microzooplankton: a comparative study of bactivorous zooflagellates and ciliates. Mar Microb Food Webs 1:51–60

    Google Scholar 

  • Robertson JR (1983) Predation by estuarine zooplankton on tintinnid ciliates. Estuar Coast Shelf Sci 16:27–36

    Article  Google Scholar 

  • Rosetta CH, McManus GB (2003) Feeding by ciliates on two harmful algal bloom species, Prymnesium parvum and Prorocentrum minimum. Harmful Algae 2:109–126

    Article  Google Scholar 

  • Ross RM (1982) Energetics of Euphausia pacifica. I. Effects of body carbon and nitrogen and temperature on measured and predicted production. Mar Biol 68:1–13

    Article  CAS  Google Scholar 

  • Rublee PA, Gallegos CL (1989) Use of fluorescently labelled algae (FLA) to estimate microzooplankton grazing. Mar Ecol Prog Ser 51:221–227

    Article  Google Scholar 

  • Safi KA, Vant WN, Hall JA (2002) Growth and grazing within the microbial food web of a large coastal embayment. Aquat Microb Ecol 29:39–50

    Article  Google Scholar 

  • Saito H, Suzuki K, Hinuma A et al (2005) Responses of microzooplankton to in situ iron fertilization in the western subarctic Pacific (SEEDS). Prog Oceanogr 64:223–236

    Article  Google Scholar 

  • Sakka A, Legendre L, Gosselin M et al (2000) Structure of the oligotrophic planktonic food web under low grazing of heterotrophic bacteria: Takapoto Atoll, French Polynesia. Mar Ecol Prog Ser 197:1–17

    Article  Google Scholar 

  • Sánchez N, González HE, Iriate JL (2011) Trophic interactions of pelagic crustaceans in Comau Fjord (Chile): their role in the food web structure. J Plankton Res 33:1212–1229

    Article  Google Scholar 

  • Schmidt LE, Hansen PJ (2001) Allelopathy in the prymnesiophyte Chrysochromulina polylepis: effect of cell concentration, growth phase and pH. Mar Ecol Prog Ser 216:67–81

    Article  CAS  Google Scholar 

  • Scott JM (1985) The feeding rates and efficiencies of a marine ciliate Strombidium sp grown under chemostat steady-state conditions. J Exp Mar Biol Ecol 90:81–95

    Article  Google Scholar 

  • Seong KA, Jeong HJ, Kim S et al (2006) Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar Ecol Prog Ser 322:85–97

    Article  Google Scholar 

  • Setälä O, Autio R, Kuosa H (2005) Predator–prey interactions between a planktonic ciliate Strombidium sp. (Ciliophora, Oligotrichida) and the dinoflagellate Pfiesteria piscicida (Dinamoebiales, Pyrrophyta). Harmful Algae 4:235–247

    Article  Google Scholar 

  • Sheldon RW, Prakash A, Sutcliffe WH (1972) The size distribution of particles in the ocean. Limnol Oceanogr 17:327–340

    Article  Google Scholar 

  • Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325:710–711

    Article  Google Scholar 

  • Sherr EB, Sherr BF (1994) Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28:223–235

    Article  CAS  PubMed  Google Scholar 

  • Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81:293–308

    Article  CAS  PubMed  Google Scholar 

  • Sherr EB, Sherr BF (2007) Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar Ecol Prog Ser 352:187–197

    Article  Google Scholar 

  • Sherr EB, Sherr BF, Fallon RD, Newell SY (1986) Small aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol Oceanogr 31:177–183

    Article  Google Scholar 

  • Sherr BF, Sherr EB, Fallon RD (1987) Use of monodispersed fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol 53:958–965

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sherr BF, Sherr EB, Rassoulzadegan F (1988) Rates of digestion of bacteria by marine phagotrophic protozoa: temperature dependence. Appl Environ Microbiol 54(5):1091–1095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sherr EB, Rassoulzadegan F, Sherr BF (1989) Bacterivory by pelagic choreotrichous ciliates in coastal waters of the NW Mediterranean Sea. Mar Ecol Prog Ser 55:235–240

    Article  Google Scholar 

  • Sherr EB, Sherr BF, McDaniel J (1991) Clearance rates of <6 μm fluorescently labeled algae (FLA) by estuarine protozoa: potential grazing impact of flagellates and ciliates. Mar Ecol Prog Ser 69:81–92

    Article  Google Scholar 

  • Sherr BF, Sherr EB, McDaniel J (1992) Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Appl Environ Microb 58(8):2381–2385

    CAS  Google Scholar 

  • Stoecker DK (1988) Are marine planktonic ciliates suspension-feeders? J Protozool 35(2):252–255

    Article  Google Scholar 

  • Stoecker DK (2013) Predators of tintinnids. In: Dolan J, Montagnes DJS, Agatha S et al (eds) The biology and ecology of tintinnid ciliates, model for marine plankton. Wiley, Chichester, pp 122–144

    Google Scholar 

  • Stoecker DK, Capuzzo JM (1990) Predation on protozoa: its importance to zooplankton. J Plankton Res 12(5):891–908

    Article  Google Scholar 

  • Stoecker D, Guillard RRL (1982) Effects of temperature and light on the feeding rate of Favella sp (Ciliated Protozoa Suborder Tintinnina). Ann Inst Oceanogr Paris 58(S):309–318

    Google Scholar 

  • Stoecker DK, Sanders NK (1985) Differential grazing by Acartia tonsa on a dinoflagellate and a tintinnid. J Plankton Res 7:85–100

    Article  Google Scholar 

  • Stoecker D, Guillard RRL, Kavee RM (1981) Selective predation by Favella ehrenbergii (Tintinnia) on and among dinoflagellates. Biol Bull Mar Biol Lab Woods Hole 160:136–145

    Article  Google Scholar 

  • Stoecker DK, Michaels AE, Davis LH (1987a) Grazing by the jellyfish, Aurelia aurita, on microzooplankton. J Plankton Res 9:901–915

    Article  Google Scholar 

  • Stoecker DK, Verity PG, Michaels AE et al (1987b) Grazing by larval and post-larval ctenophores on microzooplankton. J Plankton Res 9:667–683

    Article  Google Scholar 

  • Stoecker DK, Stevens K, Gustafson DE Jr (2000) Grazing on Pfiesteria piscicida by microzooplankton. Aquat Microb Ecol 22:261–270

    Article  Google Scholar 

  • Strom SL (1991) Growth and grazing rates of the herbivorous dinoflagellate Gymnodinium sp. from the open subarctic Pacific Ocean. Mar Ecol Prog Ser 78:103–113

    Article  Google Scholar 

  • Strom SL (2001) Light-aided digestion, grazing and growth in herbivorous protists. Aquat Microb Ecol 23:253–261

    Article  Google Scholar 

  • Strom SL, Morello TA (1998) Comparative growth rates and yields of ciliates and heterotrophic dinoflagellates. J Plankton Res 20(3):571–584

    Article  Google Scholar 

  • Strom S, Postel JR, Booth BC (1993) Abundance, variability, and potential grazing impact of planktonic ciliates in the open subarctic Pacific Ocean. Prog Oceanogr 32:185–203

    Article  Google Scholar 

  • Sullivan LJ, Gifford DJ (2004) Growth and feeding rates of the newly hatched larval ctenophore Mnemiopsis leidyi A. Agassiz (Ctenophora, Lobata). J Plankton Res 29(11):949–965

    Article  Google Scholar 

  • Tamigneaux E, Mingelbier M, Klein B et al (1997) Grazing by protists and seasonal changes in the size structure of protozooplankton and phytoplankton in a temperate nearshore environment (western Gulf of St Lawrence Canada). Mar Ecol Prog Ser 146:231–247

    Article  Google Scholar 

  • Tang KW, Taal M (2005) Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. J Exp Mar Biol Ecol 318:85–98

    Article  Google Scholar 

  • Taniguchi A (1978) Reproduction and life histories of the tintinnid ciliates (review). Bull Plankton Soc Jpn 25(2):123–134 (in Japanese with English abstract)

    Google Scholar 

  • Taniguchi A, Kawakami R (1985) Feeding activity of a tintinnid ciliate Favella taraikaensis and its variability observed in laboratory cultures. Mar Microb Food Webs 1:17–34

    Google Scholar 

  • Taniguchi A, Takeda Y (1988) Feeding rate and behavior of the tintinnid ciliate Favella taraikaensis observed with a high speed VTR system. Mar Microb Food Webs 3:21–34

    Google Scholar 

  • Trottet A, Roy S, Tamigneaux E, Lovejoy C (2007) Importance of heterotrophic planktonic communities in a mussel culture environment: the Grande Entrée lagoon, Magdalen Islands (Québec, Canada). Mar Biol 151:377–392

    Article  Google Scholar 

  • Umani SF, Beran A (2003) Seasonal variations in the dynamics of microbial plankton communities: first estimates from experiments in the Gulf of Trieste, Northern Adriatic Sea. Mar Ecol Prog Ser 247:1–16

    Article  Google Scholar 

  • Uye S, Shimauchi H (2005) Population biomass, feeding, respiration and growth rates, and carbon budget of the scyphomedusa Aurelia aurita in the Inland Sea of Japan. J Plankton Res 27:237–248

    Article  CAS  Google Scholar 

  • Uye S, Shimazu T (1997) Geographical and seasonal variations in abundance, biomass and estimated production rates of meso- and macrozooplankton in the Inland Sea of Japan. J Oceanogr 53:529–538

    Google Scholar 

  • Uye S, Ueta Y (2004) Recent increase of jellyfish populations and their nuisance to fisheries in the Inland Sea of Japan. Bull Jpn Soc Fish Oceanogr 68:9–19 (in Japanese with English abstract)

    Google Scholar 

  • Uye S, Nagano N, Tamaki H (1996) Geographical and seasonal variations in abundance, biomass and estimated production rates of microzooplankton in the Inland sea of Japan. J Oceanogr 52:689–703

    Article  Google Scholar 

  • Vargas CA, Gonzalez HE (2004) Plankton community structure and carbon cycling in a coastal upwelling system. I. Bacteria, microprotozoans and phytoplankton in the diet of copepods and appendicularians. Aquat Microb Ecol 34:151–164

    Article  Google Scholar 

  • Vargas CA, Martínez RA (2009) Grazing impact of natural populations of ciliates and dinoflagellates in a river-influenced continental shelf. Aquat Microb Ecol 56:93–108

    Article  Google Scholar 

  • Verity PG (1985) Grazing respiration excretion and growth rates of tintinnids. Limnol Oceanogr 30:1268–1282

    Article  Google Scholar 

  • Verity PG (1988) Chemosensory behavior in marine planktonic ciliates. Bull Mar Sci 43:772–782

    Google Scholar 

  • Verity PG (1991) Measurement and simulation of prey uptake by marine planktonic ciliates fed plastidic and aplastidic nanoplankton. Limnol Oceanogr 36:729–750

    Article  Google Scholar 

  • Verity PG, Paffenhofer GA (1996) On assessment of prey ingestion by copepods. J Plankton Res 18:1767–1779

    Article  Google Scholar 

  • Verity PG, Stoecker D (1982) Effects of Olisthodiscus luteus on the growth and abundance of tintinnids. Mar Biol 72:79–87

    Article  Google Scholar 

  • Verity PG, Robertson CY, Tronzo CR, Andrews MG, Nelson JR, Sieracki ME (1992) Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr 37(7):1434–1446

    Article  CAS  Google Scholar 

  • Vincent D, Hartmann HJ (2001) Contribution of ciliated microprotozoans and dinoflagellates to the diet of three copepod species in the Bay of Biscay. Hydrobiologia 443:193–204

    Article  Google Scholar 

  • Watras CJ, Garcon VC, Olson RJ et al (1985) The effect of zooplankton grazing on estuarine blooms of the toxic dinoflagellate Gonyaulax tamarensis. J Plankton Res 7:891–908

    Article  Google Scholar 

  • Weisse T, Scheffel-Möser U (1990) Growth and grazing loss rates in single-celled Phaeocystis sp. (Prymnesiophyceae). Mar Biol 106:153–158

    Article  Google Scholar 

  • Yang EJ, Ju SJ, Choi JK (2010) Feeding activity of the copepod Acartia hongi on phytoplankton and micro-zooplankton in Gyeonggi Bay, Yellow Sea. Estuar Coast Shelf Sci 88:292–301

    Article  Google Scholar 

  • Yoo YD, Jeong HJ, Kang NS et al (2010) Ecology of Gymnodinium aureolum. II. Predation by common heterotrophic dinoflagellates and a ciliate. Aquat Microb Ecol 59:257–272

    Article  Google Scholar 

  • Zeldis J, James MR, Grieve J, Richards L (2002) Omnivory by copepods in the New Zealand Subtropical Frontal Zone. J Plankton Res 24:9–23

    Article  Google Scholar 

Download references

Acknowledgments

I thank Dr. Akira Taniguchi for his valuable comments for information and descriptions in this chapter. Thanks are also extended to Dr. Hirokazu Abe for his help in making the reference list on ciliates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kamiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kamiyama, T. (2015). Planktonic Ciliates: Diverse Ecological Function in Seawater. In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_11

Download citation

Publish with us

Policies and ethics