Skip to main content

Molecular Mechanisms of the Function of Pineal Organs

  • Chapter
  • First Online:
Vertebrate Photoreceptors
  • 1250 Accesses

Abstract

The pineal organ in nonmammalian species is a light-sensitive brain structure mediating photosensory and photoendocrine functions. This chapter reviews the photopigments and the phototransduction pathways in the pineal organs of chicken, teleosts, and lamprey and those in the pineal-related organ, the parietal eye, of lizard. Chicken pinealocytes contain a rhodopsin-like molecules, pinopsin, which activates a G protein, transducin, in a light-dependent manner resulting in acute suppression of melatonin synthesis within the cells. Pinopsin is dominantly expressed in the avian and reptilian pineal organs, whereas teleost pineal organs have another rhodopsin-like molecule, exo-rhodopsin, instead of pinopsin. The pineal organs of lampreys exhibit antagonistic responses to green and UV light at the interneuron level: This UV response is mediated by parapinopsin in the photoreceptor cells. In lizards, the parietal eye photoreceptor cells show antagonistic responses to green and blue light at the photoreceptor cell level: parietopsin and pinopsin are likely to antagonistically regulate a cGMP pathway to elicit the responses. This chapter also introduces a more recent topic on a new pineal function as producing a neurosteroid, 7α-hydroxypregnenolone, that regulates behavioral activities in some species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arendt J, Skene DJ (2005) Melatonin as a chronobiotic. Sleep Med Rev 9(1):25–39. doi:10.1016/j.smrv.2004.05.002

    Article  PubMed  Google Scholar 

  • Asaoka Y, Mano H, Kojima D, Fukada Y (2002) Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish. Proc Natl Acad Sci USA 99(24):15456–15461. doi:10.1073/pnas.232444199

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bailey MJ, Cassone VM (2005) Melanopsin expression in the chick retina and pineal gland. Brain Res Mol Brain Res 134(2):345–348. doi:10.1016/j.molbrainres.2004.11.003

    Article  PubMed  CAS  Google Scholar 

  • Bellingham J, Tarttelin EE, Foster RG, Wells DJ (2003) Structure and evolution of the teleost extraretinal rod-like opsin (errlo) and ocular rod opsin (rho) genes: is teleost rho a retrogene? J Exp Zool B Mol Dev Evol 297(1):1–10. doi:10.1002/jez.b.18

    Article  PubMed  Google Scholar 

  • Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, Tarttelin EE, Iuvone PM, Hankins MW, Tosini G, Lucas RJ (2006) Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol 4(8):e254. doi:10.1371/journal.pbio.0040254

    Article  PubMed Central  PubMed  Google Scholar 

  • Binkley SA, Riebman JB, Reilly KB (1978) The pineal gland: a biological clock in vitro. Science 202(4373):1198–1120

    Article  PubMed  CAS  Google Scholar 

  • Blackshaw S, Snyder SH (1997) Parapinopsin, a novel catfish opsin localized to the parapineal organ, defines a new gene family. J Neurosci 17(21):8083–8092

    PubMed  CAS  Google Scholar 

  • Cassone VM, Paulose JK, Whitfield-Rucker MG, Peters JL (2009) Time's arrow flies like a bird: two paradoxes for avian circadian biology. Gen Comp Endocrinol 163(1-2):109–116. doi:10.1016/j.ygcen.2009.01.003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R, Natesan A, Zatz M, Tosini G, Liu C, Korf HW, Iuvone PM, Provencio I (2005) Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem 92(1):158–170. doi:10.1111/j.1471-4159.2004.02874.x

    Article  PubMed  CAS  Google Scholar 

  • Chinen A, Hamaoka T, Yamada Y, Kawamura S (2003) Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 163(2):663–675

    PubMed Central  PubMed  CAS  Google Scholar 

  • Deguchi T (1979a) A circadian oscillator in cultured cells of chicken pineal gland. Nature (Lond) 282(5734):94–96

    Article  CAS  Google Scholar 

  • Deguchi T (1979b) Circadian rhythm of serotonin N-acetyltransferase activity in organ culture of chicken pineal gland. Science 203(4386):1245–1247

    Article  PubMed  CAS  Google Scholar 

  • Deguchi T (1979c) Role of adenosine 3',5'-monophosphate in the regulation of circadian oscillation of serotonin N-acetyltransferase activity in cultured chicken pineal gland. J Neurochem 33(1):45–51

    Article  PubMed  CAS  Google Scholar 

  • Deguchi T (1981) Rhodopsin-like photosensitivity of isolated chicken pineal gland. Nature (Lond) 290(5808):706–707

    Article  CAS  Google Scholar 

  • Dodt E (1963) Photosensitivity of the pineal organ in the teleost, Salmo irideus (Gibbons). Experientia (Basel) 19:642–643

    Article  CAS  Google Scholar 

  • Dodt E, Scherer E (1968) Photic responses from the parietal eye of the lizard Lacerta sicula campestris (De Betta). Vision Res 8(1):61–72. doi:10.1016/0042-6989(68)90064-3

    Article  Google Scholar 

  • Doi M, Nakajima Y, Okano T, Fukada Y (2001) Light-induced phase-delay of the chicken pineal circadian clock is associated with the induction of cE4bp4, a potential transcriptional repressor of cPer2 gene. Proc Natl Acad Sci USA 98(14):8089–8094. doi:10.1073/pnas.141090998

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Doi M, Okano T, Yujnovsky I, Sassone-Corsi P, Fukada Y (2004) Negative control of circadian clock regulator E4BP4 by casein kinase Iepsilon-mediated phosphorylation. Curr Biol 14(11):975–980. doi:10.1016/j.cub.2004.05.043

    Article  PubMed  CAS  Google Scholar 

  • Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20(1):49–94

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom P, Meissl H (2003) Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. Philos Trans R Soc Lond B Biol Sci 358(1438):1679–1700. doi:10.1098/rstb.2003.1303

    Article  PubMed Central  PubMed  Google Scholar 

  • Finn JT, Solessio EC, Yau KW (1997) A cGMP-gated cation channel in depolarizing photoreceptors of the lizard parietal eye. Nature (Lond) 385(6619):815–819. doi:10.1038/385815a0

    Article  CAS  Google Scholar 

  • Gaston S, Menaker M (1968) Pineal function: the biological clock in the sparrow? Science 160(3832):1125–1127

    Article  PubMed  CAS  Google Scholar 

  • Hatori M, Hirota T, Iitsuka M, Kurabayashi N, Haraguchi S, Kokame K, Sato R, Nakai A, Miyata T, Tsutsui K, Fukada Y (2011) Light-dependent and circadian clock-regulated activation of sterol regulatory element-binding protein, X-box-binding protein 1, and heat shock factor pathways. Proc Natl Acad Sci USA 108(12):4864–4869. doi:10.1073/pnas.1015959108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hirunagi K, Ebihara S, Okano T, Takanaka Y, Fukada Y (1997) Immunoelectron-microscopic investigation of the subcellular localization of pinopsin in the pineal organ of the chicken. Cell Tissue Res 289(2):235–241

    Article  PubMed  CAS  Google Scholar 

  • Holthues H, Engel L, Spessert R, Vollrath L (2005) Circadian gene expression patterns of melanopsin and pinopsin in the chick pineal gland. Biochem Biophys Res Commun 326(1):160–165. doi:10.1016/j.bbrc.2004.11.022

    Article  PubMed  CAS  Google Scholar 

  • Imai H, Kojima D, Oura T, Tachibanaki S, Terakita A, Shichida Y (1997) Single amino acid residue as a functional determinant of rod and cone visual pigments. Proc Natl Acad Sci USA 94(6):2322–2326. doi:10.1073/pnas.94.6.2322

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kasahara T, Okano T, Yoshikawa T, Yamazaki K, Fukada Y (2000) Rod-type transducin alpha-subunit mediates a phototransduction pathway in the chicken pineal gland. J Neurochem 75(1):217–224

    Article  PubMed  CAS  Google Scholar 

  • Kasahara T, Okano T, Haga T, Fukada Y (2002) Opsin-G11-mediated signaling pathway for photic entrainment of the chicken pineal circadian clock. J Neurosci 22(17):7321–7325

    PubMed  CAS  Google Scholar 

  • Kasal CA, Menaker M, Perez-Polo JR (1979) Circadian clock in culture: N-acetyltransferase activity of chick pineal glands oscillates in vitro. Science 203(4381):656–658

    Article  PubMed  CAS  Google Scholar 

  • Kawamura S, Yokoyama S (1997) Expression of visual and nonvisual opsins in American chameleon. Vision Res 37(14):1867–1871

    Article  PubMed  CAS  Google Scholar 

  • Kawamura S, Blow NS, Yokoyama S (1999) Genetic analyses of visual pigments of the pigeon (Columba livia). Genetics 153(4):1839–1850

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kawano-Yamashita E, Terakita A, Koyanagi M, Shichida Y, Oishi T, Tamotsu S (2007) Immunohistochemical characterization of a parapinopsin-containing photoreceptor cell involved in the ultraviolet/green discrimination in the pineal organ of the river lamprey Lethenteron japonicum. J Exp Biol 210(pt 21):3821–3829. doi:10.1242/jeb.007161

    Article  PubMed  CAS  Google Scholar 

  • Klein DC (1985) Photoneural regulation of the mammalian pineal gland. Ciba Found Symp 117:38–56

    PubMed  CAS  Google Scholar 

  • Kojima D, Mano H, Fukada Y (2000) Vertebrate ancient-long opsin: a green-sensitive photoreceptive molecule present in zebrafish deep brain and retinal horizontal cells. J Neurosci 20(8):2845–2851

    PubMed  CAS  Google Scholar 

  • Kojima D, Torii M, Fukada Y, Dowling JE (2008) Differential expression of duplicated VAL-opsin genes in the developing zebrafish. J Neurochem 104(5):1364–1371. doi:10.1111/j.1471-4159.2007.05093.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kojima D, Mori S, Torii M, Wada A, Morishita R, Fukada Y (2011) UV-sensitive photoreceptor protein OPN5 in humans and mice. PloS One 6(10):e26388. doi:10.1371/journal.pone.0026388

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Koyanagi M, Kawano E, Kinugawa Y, Oishi T, Shichida Y, Tamotsu S, Terakita A (2004) Bistable UV pigment in the lamprey pineal. Proc Natl Acad Sci USA 101(17):6687–6691. doi:10.1073/pnas.0400819101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Koyanagi M, Kubokawa K, Tsukamoto H, Shichida Y, Terakita A (2005) Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol 15(11):1065–1069. doi:10.1016/j.cub.2005.04.063

    Article  PubMed  CAS  Google Scholar 

  • Kuwayama S, Imai H, Hirano T, Terakita A, Shichida Y (2002) Conserved proline residue at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsins. Biochemistry 41(51):15245–15252. doi:10.1021/Bi026444k

    Google Scholar 

  • Mano H, Kojima D, Fukada Y (1999) Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. Brain Res Mol Brain Res 73(1-2):110–118

    Article  PubMed  CAS  Google Scholar 

  • Matsushita A, Yoshikawa T, Okano T, Kasahara T, Fukada Y (2000) Colocalization of pinopsin with two types of G-protein alpha-subunits in the chicken pineal gland. Cell Tissue Res 299(2):245–251

    PubMed  CAS  Google Scholar 

  • Max M, Menaker M (1992) Regulation of melatonin production by light, darkness, and temperature in the trout pineal. J Comp Physiol A 170(4):479–489

    Article  PubMed  CAS  Google Scholar 

  • Max M, McKinnon PJ, Seidenman KJ, Barrett RK, Applebury ML, Takahashi JS, Margolskee RF (1995) Pineal opsin: a nonvisual opsin expressed in chick pineal. Science 267(5203):1502–1506

    Article  PubMed  CAS  Google Scholar 

  • Max M, Surya A, Takahashi JS, Margolskee RF, Knox BE (1998) Light-dependent activation of rod transducin by pineal opsin. J Biol Chem 273(41):26820–26826. doi:10.1074/jbc.273.41.26820

    Article  PubMed  CAS  Google Scholar 

  • Meissl H, Ekstrom P (1988) Photoreceptor responses to light in the isolated pineal organ of the trout, Salmo gairdneri. Neuroscience 25(3):1071–1076

    Article  PubMed  CAS  Google Scholar 

  • Miller WH, Wolbarsht ML (1962) Neural activity in the parietal eye of a lizard. Science 135(3500):316–317

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Dodt E (1973) Slow photic responses of the isolated pineal organ of lamprey. Nova Acta Leopold 38:331–339

    Google Scholar 

  • Nakamura A, Kojima D, Imai H, Terakita A, Okano T, Shichida Y, Fukada Y (1999) Chimeric nature of pinopsin between rod and cone visual pigments. Biochemistry 38(45):14738–14745. doi:10.1021/bi9913496

    Article  PubMed  CAS  Google Scholar 

  • Okano T, Fukada Y (2003) Chicktacking pineal clock. J Biochem (Tokyo) 134(6):791–797. doi:10.1093/jb/mvg221

    Article  CAS  Google Scholar 

  • Okano T, Yoshizawa T, Fukada Y (1994) Pinopsin is a chicken pineal photoreceptive molecule. Nature (Lond) 372(6501):94–97. doi:10.1038/372094a0

    Article  CAS  Google Scholar 

  • Okano T, Yamazaki K, Kasahara T, Fukada Y (1997) Molecular cloning of heterotrimeric G-protein alpha-subunits in chicken pineal gland. J Mol Evol 44(suppl 1):S91–S97

    Article  PubMed  CAS  Google Scholar 

  • Oksche A (1965) Survey of the development and comparative morphology of the pineal organ. Prog Brain Res 10:3–29

    Article  PubMed  CAS  Google Scholar 

  • Philp AR, Bellingham J, Garcia-Fernandez J, Foster RG (2000a) A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish. FEBS Lett 468(2-3):181–188

    Article  PubMed  CAS  Google Scholar 

  • Philp AR, Garcia-Fernandez JM, Soni BG, Lucas RJ, Bellingham J, Foster RG (2000b) Vertebrate ancient (VA) opsin and extraretinal photoreception in the Atlantic salmon (Salmo salar). J Exp Biol 203(pt 12):1925–1936

    PubMed  CAS  Google Scholar 

  • Refinetti R, Menaker M (1992) The circadian rhythm of body temperature. Physiol Behav 51(3):613–637

    Article  PubMed  CAS  Google Scholar 

  • Rennison DJ, Owens GL, Taylor JS (2012) Opsin gene duplication and divergence in ray-finned fish. Mol Phylogenet Evol 62(3):986–1008. doi:10.1016/j.ympev.2011.11.030

    Article  PubMed  Google Scholar 

  • Robinson J, Schmitt EA, Dowling JE (1995) Temporal and spatial patterns of opsin gene expression in zebrafish (Danio rerio). Vis Neurosci 12(5):895–906

    Article  PubMed  CAS  Google Scholar 

  • Shichida Y, Imai H (1998) Visual pigment: G-protein-coupled receptor for light signals. Cell Mol Life Sci 54(12):1299–1315

    Article  PubMed  CAS  Google Scholar 

  • Simonneaux V, Ribelayga C (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 55(2):325–395. doi:10.1124/pr.55.2.2

    Article  PubMed  CAS  Google Scholar 

  • Solessio E, Engbretson GA (1993) Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards. Nature (Lond) 364(6436):442–445. doi:10.1038/364442a0

    Article  CAS  Google Scholar 

  • Su CY, Luo DG, Terakita A, Shichida Y, Liao HW, Kazmi MA, Sakmar TP, Yau KW (2006) Parietal-eye phototransduction components and their potential evolutionary implications. Science 311(5767):1617–1621. doi:10.1126/science.1123802

    Article  PubMed  CAS  Google Scholar 

  • Tamotsu S, Korf HW, Morita Y, Oksche A (1990) Immunocytochemical localization of serotonin and photoreceptor-specific proteins (rod-opsin, S-antigen) in the pineal complex of the river lamprey, Lampetra japonica, with special reference to photoneuroendocrine cells. Cell Tissue Res 262(2):205–216

    Article  PubMed  CAS  Google Scholar 

  • Tamotsu S, Oishi T, Nakao K, Fukada Y, Shichida Y, Yoshizawa T, Morita Y (1994) Localization of iodopsin and rod-opsin immunoreactivity in the retina and pineal complex of the river lamprey, Lampetra japonica. Cell Tissue Res 278(1):1–10. doi:10.1007/s004410050188

    Article  CAS  Google Scholar 

  • Taniguchi Y, Hisatomi O, Yoshida M, Tokunaga F (2001) Pinopsin expressed in the retinal photoreceptors of a diurnal gecko. FEBS Lett 496(2-3):69–74

    Article  PubMed  CAS  Google Scholar 

  • Tarttelin EE, Fransen MP, Edwards PC, Hankins MW, Schertler GF, Vogel R, Lucas RJ, Bellingham J (2011) Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced meta II decay. Cell Mol Life Sci 68(22):3713–3723. doi:10.1007/s00018-011-0665-y

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13(3):382–390. doi:10.1101/gr.640303

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Terakita A, Tsukamoto H, Koyanagi M, Sugahara M, Yamashita T, Shichida Y (2008) Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J Neurochem 105(3):883–890. doi:10.1111/j.1471-4159.2007.05184.x

    Article  PubMed  CAS  Google Scholar 

  • Torii M, Kojima D, Okano T, Nakamura A, Terakita A, Shichida Y, Wada A, Fukada Y (2007) Two isoforms of chicken melanopsins show blue light sensitivity. FEBS Lett 581(27):5327–5331. doi:10.1016/j.febslet.2007.10.019

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Morita Y (1994) Spectral sensitivity and mechanism of interaction between inhibitory and excitatory responses of photosensory pineal neurons. Pflugers Arch 427(3-4):373–377. doi:10.1007/BF00374547

    Article  PubMed  CAS  Google Scholar 

  • van Veen T, Ostholm T, Gierschik P, Spiegel A, Somers R, Korf HW, Klein DC (1986) alpha-Transducin immunoreactivity in retinae and sensory pineal organs of adult vertebrates. Proc Natl Acad Sci USA 83(4):912–916

    Article  PubMed Central  PubMed  Google Scholar 

  • Wada S, Kawano-Yamashita E, Koyanagi M, Terakita A (2012) Expression of UV-sensitive parapinopsin in the iguana parietal eyes and its implication in UV-sensitivity in vertebrate pineal-related organs. PloS One 7(6):e39003. doi:10.1371/journal.pone.0039003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xiong WH, Solessio EC, Yau KW (1998) An unusual cGMP pathway underlying depolarizing light response of the vertebrate parietal-eye photoreceptor. Nat Neurosci 1(5):359–365. doi:10.1038/1570

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Ohuchi H, Tomonari S, Ikeda K, Sakai K, Shichida Y (2010) Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci USA 107(51):22084–22089. doi:10.1073/pnas.1012498107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zatz M (1994) Photoendocrine transduction in cultured chick pineal cells: IV. What do vitamin A depletion and retinaldehyde addition do to the effects of light on the melatonin rhythm? J Neurochem 62(5):2001–2011

    Article  PubMed  CAS  Google Scholar 

  • Zatz M, Mullen DA (1988) Two mechanisms of photoendocrine transduction in cultured chick pineal cells: pertussis toxin blocks the acute but not the phase-shifting effects of light on the melatonin rhythm. Brain Res 453(1-2):63–71

    Article  PubMed  CAS  Google Scholar 

  • Ziv L, Tovin A, Strasser D, Gothilf Y (2007) Spectral sensitivity of melatonin suppression in the zebrafish pineal gland. Exp Eye Res 84(1):92–99. doi:10.1016/j.exer.2006.09.004

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daisuke Kojima or Yoshitaka Fukada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kojima, D., Fukada, Y. (2014). Molecular Mechanisms of the Function of Pineal Organs. In: Furukawa, T., Hurley, J., Kawamura, S. (eds) Vertebrate Photoreceptors. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54880-5_13

Download citation

Publish with us

Policies and ethics