Skip to main content

Regenerative Medicine in Cochlear Implantation

  • Chapter
  • First Online:
Regenerative Medicine for the Inner Ear
  • 1010 Accesses

Abstract

Cochlear implantation improves hearing and speech ability in patients with profound or severe sensorineural hearing loss. However, its effects are limited when there is a primary auditory neuron response deficiency. To overcome this limitation, several strategies have been developed for the preservation or regeneration of spiral ganglion cells, i.e., primary auditory neurons. Among those strategies, the administration of neurotrophic factors and the transplantation of neural stem or progenitor cells are two of the most promising. To preserve spiral ganglion cells, neurotrophic factors can be delivered into the cochlea by various methods including direct infusion, viral vectors, transplantation of neurotrophic factor-transfected cells, and transplantation of neural stem cells. To regenerate spiral ganglion cells, transplantation of stem or progenitor cells is required. The most efficient method is the transplantation of pluripotent stem cells that are induced toward neural or otic fate in vitro before transplantation.

In addition to overcoming the limitations of cochlear implantation, regenerative medicine plays a role in the extension of the cochlear implantation indication. Recently, even patients with residual hearing in the low frequency have received cochlear implantation. In this case, preservation of residual hair cells is mandatory. Several growth factors, including insulin-like growth factor (IGF-1), are useful for that purpose because they can protect hair cells from injury and even regenerate them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blamey P, Arndt P, Bergeron F, Bredberg G, Brimacombe J, Facer G, et al. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants. Audiol Neurootol. 1996;1(5):293–306.

    Article  CAS  PubMed  Google Scholar 

  2. Gantz BJ, Woodworth GG, Knutson JF, Abbas PJ, Tyler RS. Multivariate predictors of audiological success with multichannel cochlear implants. Ann Otol Rhinol Laryngol. 1993;102(12):909–16.

    CAS  PubMed  Google Scholar 

  3. Summerfield AQ, Marshall DH. Preoperative predictors of outcomes from cochlear implantation in adults: performance and quality of life. Ann Otology Rhinol Laryngol Suppl. 1995;166:105–8.

    CAS  Google Scholar 

  4. Nadol Jr JB, Young YS, Glynn RJ. Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol. 1989;98(6):411–6.

    PubMed  Google Scholar 

  5. Fayad JN, Linthicum Jr FH. Multichannel cochlear implants: relation of histopathology to performance. Laryngoscope. 2006;116(8):1310–20. doi:10.1097/01.mlg.0000227176.09500.28.

    Article  PubMed  Google Scholar 

  6. Khan AM, Handzel O, Burgess BJ, Damian D, Eddington DK, Nadol Jr JB. Is word recognition correlated with the number of surviving spiral ganglion cells and electrode insertion depth in human subjects with cochlear implants? Laryngoscope. 2005;115(4):672–7. doi:10.1097/01.mlg.0000161335.62139.80.

    Article  PubMed  Google Scholar 

  7. Bonham BH, Litvak LM. Current focusing and steering: modeling, physiology, and psychophysics. Hear Res. 2008;242(1–2):141–53. doi:10.1016/j.heares.2008.03.006.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Adunka OF, Roush PA, Teagle HF, Brown CJ, Zdanski CJ, Jewells V, et al. Internal auditory canal morphology in children with cochlear nerve deficiency. Otol Neurotol. 2006;27(6):793–801. doi:10.1097/01.mao.0000227895.34915.94.

  9. Nakano A, Arimoto Y, Matsunaga T. Cochlear nerve deficiency and associated clinical features in patients with bilateral and unilateral hearing loss. Otol Neurotol. 2013;34(3):554–8. doi:10.1097/MAO.0b013e3182804b31.

  10. Govaerts PJ, Casselman J, Daemers K, De Beukelaer C, Yperman M, De Ceulaer G. Cochlear implants in aplasia and hypoplasia of the cochleovestibular nerve. Otol Neurotol. 2003;24(6):887–91.

    Google Scholar 

  11. Ernfors P, Duan ML, ElShamy WM, Canlon B. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nat Med. 1996;2(4):463–7.

    Article  CAS  PubMed  Google Scholar 

  12. Glueckert R, Bitsche M, Miller JM, Zhu Y, Prieskorn DM, Altschuler RA, et al. Deafferentation-associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain-derived neurotrophic factor and acidic fibroblast growth factor. J Comp Neurol. 2008;507(4):1602–21. doi:10.1002/cne.21619.

    Article  PubMed  Google Scholar 

  13. Miller JM, Le Prell CG, Prieskorn DM, Wys NL, Altschuler RA. Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: effects of brain-derived neurotrophic factor and fibroblast growth factor. J Neurosci Res. 2007;85(9):1959–69. doi:10.1002/jnr.21320.

    Article  CAS  PubMed  Google Scholar 

  14. Shibata SB, Cortez SR, Beyer LA, Wiler JA, Di Polo A, Pfingst BE, et al. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol. 2010;223(2):464–72. doi:10.1016/j.expneurol.2010.01.011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Staecker H, Kopke R, Malgrange B, Lefebvre P, Van de Water TR. NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells. Neuroreport. 1996;7(4):889–94.

    Article  CAS  PubMed  Google Scholar 

  16. Wise AK, Hume CR, Flynn BO, Jeelall YS, Suhr CL, Sgro BE, et al. Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Mol Ther. 2010;18(6):1111–22. doi:10.1038/mt.2010.28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wise AK, Richardson R, Hardman J, Clark G, O’Leary S. Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3. J Comp Neurol. 2005;487(2):147–65. doi:10.1002/cne.20563.

    Article  CAS  PubMed  Google Scholar 

  18. Shibata SB, Budenz CL, Bowling SA, Pfingst BE, Raphael Y. Nerve maintenance and regeneration in the damaged cochlea. Hear Res. 2011;281(1–2):56–64. doi:10.1016/j.heares.2011.04.019.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Okano T, Nakagawa T, Kita T, Endo T, Ito J. Cell-gene delivery of brain-derived neurotrophic factor to the mouse inner ear. Mol Ther. 2006;14(6):866–71. doi:10.1016/j.ymthe.2006.06.012.

    Article  CAS  PubMed  Google Scholar 

  20. Iguchi F, Nakagawa T, Tateya I, Kim TS, Endo T, Taniguchi Z, et al. Trophic support of mouse inner ear by neural stem cell transplantation. Neuroreport. 2003;14(1):77–80. doi:10.1097/01.wnr.0000050714.17082.9b.

    Article  PubMed  Google Scholar 

  21. Endo T, Nakagawa T, Kita T, Iguchi F, Kim TS, Tamura T, et al. Novel strategy for treatment of inner ears using a biodegradable gel. Laryngoscope. 2005;115(11):2016–20. doi:10.1097/01.mlg.0000183020.32435.59.

    Article  CAS  PubMed  Google Scholar 

  22. Richardson RT, Wise AK, Thompson BC, Flynn BO, Atkinson PJ, Fretwell NJ, et al. Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials. 2009;30(13):2614–24. doi:10.1016/j.biomaterials.2009.01.015.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Paasche G, Gibson P, Averbeck T, Becker H, Lenarz T, Stover T. Technical report: modification of a cochlear implant electrode for drug delivery to the inner ear. Otol Neurotol. 2003;24(2):222–7.

    Google Scholar 

  24. Tamura T, Nakagawa T, Iguchi F, Tateya I, Endo T, Kim TS, et al. Transplantation of neural stem cells into the modiolus of mouse cochleae injured by cisplatin. Acta Otolaryngol Suppl. 2004;551:65–8.

    Article  PubMed  Google Scholar 

  25. Hu Z, Wei D, Johansson CB, Holmstrom N, Duan M, Frisen J, et al. Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear. Exp Cell Res. 2005;302(1):40–7. doi:10.1016/j.yexcr.2004.08.023.

    Article  CAS  PubMed  Google Scholar 

  26. Hu Z, Andang M, Ni D, Ulfendahl M. Neural cograft stimulates the survival and differentiation of embryonic stem cells in the adult mammalian auditory system. Brain Res. 2005;1051(1–2):137–44. doi:10.1016/j.brainres.2005.06.016.

    Article  CAS  PubMed  Google Scholar 

  27. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron. 2000;28(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  28. Ying QL, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol. 2003;21(2):183–6. doi:10.1038/nbt780.

    Article  CAS  PubMed  Google Scholar 

  29. Okano T, Nakagawa T, Endo T, Kim TS, Kita T, Tamura T, et al. Engraftment of embryonic stem cell-derived neurons into the cochlear modiolus. Neuroreport. 2005;16(17):1919–22.

    Article  PubMed  Google Scholar 

  30. Chen W, Jongkamonwiwat N, Abbas L, Eshtan SJ, Johnson SL, Kuhn S, et al. Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature. 2012;490(7419):278–82. doi:10.1038/nature11415.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  32. von Ilberg C, Kiefer J, Tillein J, Pfenningdorff T, Hartmann R, Sturzebecher E, et al. Electric-acoustic stimulation of the auditory system. New technology for severe hearing loss. J Otorhinolaryngol. 1999;61(6):334–40.

    Google Scholar 

  33. Woodson EA, Reiss LA, Turner CW, Gfeller K, Gantz BJ. The hybrid cochlear implant: a review. Adv Otorhinolaryngol. 2010;67:125–34. doi:10.1159/000262604.

    PubMed  Google Scholar 

  34. Adunka O, Kiefer J. Impact of electrode insertion depth on intracochlear trauma. Otolaryngol Head Neck Surg. 2006;135(3):374–82.

    Article  PubMed  Google Scholar 

  35. Adunka O, Kiefer J, Unkelbach MH, Lehnert T, Gstoettner W. Development and evaluation of an improved cochlear implant electrode design for electric acoustic stimulation. Laryngoscope. 2004;114(7):1237–41. doi:10.1097/00005537-200407000-00018.

    Article  PubMed  Google Scholar 

  36. Kiefer J, Gstoettner W, Baumgartner W, Pok SM, Tillein J, Ye Q, et al. Conservation of low-frequency hearing in cochlear implantation. Acta Otolaryngol. 2004;124(3):272–80.

    PubMed  Google Scholar 

  37. Skarzynski H, Lorens A, Piotrowska A, Anderson I. Preservation of low frequency hearing in partial deafness cochlear implantation (PDCI) using the round window surgical approach. Acta Otolaryngol. 2007;127(1):41–8. doi:10.1080/00016480500488917.

    Article  PubMed  Google Scholar 

  38. Adunka OF, Pillsbury HC, Buchman CA. Minimizing intracochlear trauma during cochlear implantation. Adv Otorhinolaryngol. 2010;67:96–107. doi:10.1159/000262601.

    PubMed  Google Scholar 

  39. Malgrange B, Rigo JM, Coucke P, Thiry M, Hans G, Nguyen L, et al. Identification of factors that maintain mammalian outer hair cells in adult organ of Corti explants. Hear Res. 2002;170(1–2):48–58.

    Article  PubMed  Google Scholar 

  40. Iwai K, Nakagawa T, Endo T, Matsuoka Y, Kita T, Kim TS, et al. Cochlear protection by local insulin-like growth factor-1 application using biodegradable hydrogel. Laryngoscope. 2006;116(4):529–33. doi:10.1097/01.mlg.0000200791.77819.eb.

    Article  CAS  PubMed  Google Scholar 

  41. Lee KY, Nakagawa T, Okano T, Hori R, Ono K, Tabata Y, et al. Novel therapy for hearing loss: delivery of insulin-like growth factor 1 to the cochlea using gelatin hydrogel. Otol Neurotol. 2007;28(7):976–81. doi:10.1097/MAO.0b013e31811f40db.

  42. Fujiwara T, Hato N, Nakagawa T, Tabata Y, Yoshida T, Komobuchi H, et al. Insulin-like growth factor 1 treatment via hydrogels rescues cochlear hair cells from ischemic injury. Neuroreport. 2008;19(16):1585–8. doi:10.1097/WNR.0b013e328311ca4b.

    Article  CAS  PubMed  Google Scholar 

  43. Hayashi Y, Yamamoto N, Nakagawa T, Ito J. Insulin-like growth factor 1 inhibits hair cell apoptosis and promotes the cell cycle of supporting cells by activating different downstream cascades after pharmacological hair cell injury in neonatal mice. Mol Cell Neurosci. 2013;56:29–38. doi:10.1016/j.mcn.2013.03.003.

    Article  CAS  PubMed  Google Scholar 

  44. Nakagawa T, Sakamoto T, Hiraumi H, Kikkawa YS, Yamamoto N, Hamaguchi K, et al. Topical insulin-like growth factor 1 treatment using gelatin hydrogels for glucocorticoid-resistant sudden sensorineural hearing loss: a prospective clinical trial. BMC Med. 2010;8:76. doi:10.1186/1741-7015-8-76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Yamamoto, N. (2014). Regenerative Medicine in Cochlear Implantation. In: Ito, J. (eds) Regenerative Medicine for the Inner Ear. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54862-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54862-1_16

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54861-4

  • Online ISBN: 978-4-431-54862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics