Advertisement

Improving Service Processes Based on Visualization of Human-Behavior and POS Data: A Case Study in a Japanese Restaurant

  • Tomohiro Fukuhara
  • Ryuhei Tenmoku
  • Takashi Okuma
  • Ryoko Ueoka
  • Masanori Takehara
  • Takeshi Kurata
Chapter

Abstract

A case study of service process improvement based on visualization of human-behavior and POS (point-of-sales) data in a Japanese restaurant is described. We developed a human-behavior sensing and visualization suite for supporting managers and employees in actual service fields to understand and improve their service processes by visualizing of both behavior and POS data. We had an experiment using the suite in the restaurant and confirmed that managers and employees were able to understand their ordinary processes, make plans for improving their processes by using the suite, and improve their processes which are observed as the increase of the stay ratio of a waiting staff in dining areas and the number of additional orders. An overview of the suite and experiment results is described.

Keywords

Data visualization Human-behavior sensing POS data analysis Quality-control circle Service process improvement 

Notes

Acknowledgment

This work was supported by the Ministry of Economy, Trade and Industry (METI) of Japan. The authors thank Ganko Food Service Co., Ltd. and all staffs of the Ganko Ginza 4-chome restaurant for their great cooperation.

References

  1. 1.
    The Council on Competitiveness (2005) Innovate America: national innovation initiative summit and report. http://www.compete.org/publications/detail/202/innovate-america/. Accessed 30 May 2013
  2. 2.
    Spohrer J, Maglio PP (2008) The emergence of service science: toward systematic service innovations to accelerate co-creation of value. Prod Oper Manag 17(3):238–246. doi: 10.3401/poms.1080.0027
  3. 3.
    Maglio PP, Srinivasan S, Kreulen JT, Spohrer J (2006) Service systems, service scientists, SSME, and innovation. Commun ACM 49(7):81–85. doi: 10.1145/1139922.1139955
  4. 4.
    Bullinger HJ, Fähnrich KP, Meiren T (2003) Service engineering: methodical development of new service products. Int J Prod Econ 85(3):275–287. doi: 10.1016/S0925-5273(03)00116-6
  5. 5.
    Miwa H, Nakajima M, Fukuhara T, Nishimura T (2013) Proposal of handing-over support system for nursing-care service with service engineering approach. In: Shimomura Y Kimita K (eds) The philosopher's stone for sustainability. Springer, Berlin Heidelberg, pp 131–136. doi: 10.1007/978-3-642-32847-3_22
  6. 6.
    Shimmura T, Takenaka T (2011) Improving restaurant operations through service engineering. In: Proceedings of the APMS 2011 conference, Stavanger, NorwayGoogle Scholar
  7. 7.
    Ishigaki T, Takenaka T, Motomura Y (2010) Category mining by heterogeneous data fusion using PdLSI model in a retail service. In: Proceedings of the 2010 IEEE international conference on data mining, Sydney, pp 857–862. doi: 10.1109/ICDM.2010.83
  8. 8.
    Nishino N, Fukuya K, Ueda K (2012) An auction mechanism considering seat reservations in movie theater services. In: Sasaki H (ed) International Journal of Organizational and Collective Intelligence (IJOCI), vol 2. IGI Global, Hershey, pp 63–76. doi: 10.4018/IJOCI.2011010104
  9. 9.
    Pigage LC, Tucker JL (1954) Motion and time study. In: Fleming RW, Dennis BD (eds) The University of Illinois Bulletin, vol 51. http://hdl.handle.net/2142/9385. Accessed 30 May 2013
  10. 10.
    Ray PS (2005) Work sampling, chapter 7. In: Badiru AB (ed) Handbook of industrial and systems engineering. CRC, Boca Raton. doi: 10.1201/9781420038347.ch7 Google Scholar
  11. 11.
    Kurata T, Kourogi M, Okuma T, Ishikawa T, Ueoka R, Tenmoku R, Makita K (2012) Human-behavior sensing and visualization for service quality control. In: Proceedings of CSCW 2012 workshop: exploring collaboration in challenging environments—from the car to the factory and beyond. http://workshops.icts.sbg.ac.at/cscw2012/. Accessed 1 Aug 2013
  12. 12.
    Kimes SE, Mutkoski SA (1991) Assessing customer contact: work sampling in restaurants. Cornell Hotel Restaur Adm Q 32(1):82–88. doi: 10.1016/0010-8804(91)90021-I CrossRefGoogle Scholar
  13. 13.
    Shimizu S, Tomizawa R, Iwasa M, Kasahara S, Suzuki T, Wako F, Kanaya I, Kawasaki K, Ishii A, Yamada K, Ohno Y (2011) Nursing business modeling with UML: from time and motion study to business modeling, chapter 22. In: Eldin AB (ed) Modern approaches to quality control. InTech, Shanghai. doi: 10.5772/23583
  14. 14.
    Kimes SE (2004) Restaurant revenue management. Cornell Hospit Rep 4(2)Google Scholar
  15. 15.
    Bertsimas D, Shioda R (2003) Restaurant revenue management. Oper Res 51(3):472–486. doi: 10.1287/opre.51.3.472.14956 CrossRefGoogle Scholar
  16. 16.
    Smith BC, Leimkuhler JF, Darrow RM (1992) Yield management at American airlines. Interfaces 22(1):8–31. doi: 10.1287/inte.22.1.8 CrossRefGoogle Scholar
  17. 17.
    Kimes SE (1989) Yield management: a tool for capacity-considered service firms. J Oper Manag 8(4):348–363. doi: 10.1016/0272-6963(89)90035-1 CrossRefGoogle Scholar
  18. 18.
    Belobaba PP (1989) Application of a probabilistic decision model to airline seat inventory control. Oper Res 37(2):183–197. doi: 10.1287/opre.37.2.183 CrossRefGoogle Scholar
  19. 19.
    Takenaka T, Ishigaki T, Motomura T (2011) Practical and interactive demand forecasting method for retail and restaurant services. In: Proceedings of the APMS 2011 conference, Stavanger, NorwayGoogle Scholar
  20. 20.
    Burger T, Kim KJ, Meiren T (2009) Visualizing and testing service concepts. In: Proceedings of the 1st international symposium on services science, Leipzig, Germany, pp 149–159Google Scholar
  21. 21.
    Simo R, Satu M, Essi K, Antti L (2012) A laboratory concept for service prototyping: service innovation corner (SINCO). In: Proceedings of ServDes 2012: service design and innovation conference, Espoo, FinlandGoogle Scholar
  22. 22.
    Hyun J, Habuchi Y, Park A, Ishikawa T, Kourogi M, Kurata T (2010) Service-field simulator using MR techniques: behavior comparison in real and virtual environments. In: Proceedings of the 20th international conference on artificial reality and telexistence (ICAT2010), Adelaide, Australia, pp 14–21Google Scholar
  23. 23.
    Inoue Y, Sashima A, Kurumatani K (2009) Indoor positioning system using beacon devices for practical pedestrian navigation on mobile phone. In: Zhang D, Portmann M, Tan AH, Indulska J (eds) Proceedings of the 6th international conference on ubiquitous intelligence and computing, Springer-Verlag, Berlin, Heidelberg, pp 251–265. doi: 10.1007/978-3-642-02830-4_20
  24. 24.
    Sumi Y, Yano M, Nishida T (2010) Analysis environment of conversational structure with nonverbal multimodal data. In: Proceedings of the international conference on multimodal interfaces and the workshop on machine learning for multimodal interaction, ACM, New York p 4, Article 44. doi: 10.1145/1891903.1891958
  25. 25.
    Choudhury T, Pentland A (2003) Sensing and modeling human networks using the Sociometer. In: Proceedings of the 7th IEEE international symposium on wearable computers, IEEE Computer Society, Washington, DC, pp 216–222. doi:  10.1109/ISWC.2003.1241414
  26. 26.
    Kim TJ, Chu M, Brdiczka O, Begole J (2009) Predicting shoppers' interest from social interactions using sociometric sensors. In: Extended abstracts of 27th annual CHI conference on human factors in computing systems (CHI 2009), ACM, Boston, pp 4513–4518. doi: 10.1145/1520340.1520692
  27. 27.
    Olguín DO, Pentland AS (2009) Sensible organizations: a sensor-based system for organizational design and engineering. In: Proceedings of the international workshop on organizational design and engineering (IWODE09). http://iwode09.ist.utl.pt/~iwode09.daemon/doku.php?id=program. Accessed 30 May 2013
  28. 28.
    Olguín DO, Pentland A (2010) Sensor-based organisational design and engineering. Int J Org Design Eng 1(1/2):69–97. doi: 10.1504/IJODE.2010.035187 Google Scholar
  29. 29.
    Ara K, Kanehira N, Olguín D, Waber BN, Kim T, Mohan A, Gloor P, Laubacher R, Oster D, Pentland AS, Yano K (2008) Sensible organizations: changing our businesses and work styles through sensor data. J Inform Process 16:1882–6652. doi: 10.2197/ipsjjip.16.1 CrossRefGoogle Scholar
  30. 30.
    Ara K, Akitomi T, Sato N, Takahashi K, Maeda H, Yano K, Yanagisawa M (2012) Integrating wearable sensor technology into project-management process. J Inform Process 20(2):406–418. doi: 10.2197/ipsjjip.20.406
  31. 31.
    Huang Z, Nagata A, Kanai-Pak M, Maeda J, Kitajima Y, Nakamura M, Aida K, Kuwahara N, Ogata T, Ota J (2012) Posture study for self-training system of patient transfer. In: IEEE international conference on robotics and biomimetics (ROBIO), pp 842–847. doi:  10.1109/ROBIO.2012.6491073
  32. 32.
    TRU-SAM (Truck Support, Administration and Management) (2013) [Computer system]. Toward Logistics Co, Ltd. http://www.tru-sam.jp/. Accessed 30 May 2013 (in Japanese)
  33. 33.
    Ueoka R, Shinmura T, Tenmoku R, Okuma T, Kurata T (2012) Introduction of computer supported quality control circle in a Japanese cuisine restaurant. In: Spohrer J, Freund L (eds) Advances in the human side of service engineering. CRC, Boca Raton, pp 379–388. doi: 10.1201/b12315-45
  34. 34.
    Ishikawa T, Okuma T, Kurata T (2009) Interactive indoor 3D modeling from a single photo with CV support. In: Thomas B, Woo W, Billinghurst M, Park J (eds) Proceedings of the 3rd international workshop on ubiquitous, virtual reality (IWUVR2009), Adelaide, AustraliaGoogle Scholar
  35. 35.
    Kourogi M, Kurata T, Ishikawa T (2010) A method of pedestrian dead reckoning using action recognition. In: Proceedings of the position location and navigation symposium (PLANS), 2010 IEEE/ION, Indian Wells, pp 85–89. doi: 10.1109/PLANS.2010.5507239
  36. 36.
    Ishikawa T, Kourogi M, Okuma T, Kurata T (2009) Economic and synergistic pedestrian tracking system for indoor environments. In: International conference of soft computing and pattern recognition (SOCPAR '09), Malacca, pp 522–527. doi: 10.1109/SoCPaR.2009.105
  37. 37.
    Ishikawa T, Kourogi M, Kurata T (2011) Evaluation and application of service-worker tracking system in real shop floors. Trans VR Soc Jpn 16(1):23–34 (in Japanese)Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Tomohiro Fukuhara
    • 1
  • Ryuhei Tenmoku
    • 1
  • Takashi Okuma
    • 1
  • Ryoko Ueoka
    • 2
  • Masanori Takehara
    • 3
  • Takeshi Kurata
    • 1
  1. 1.Center for Service ResearchNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  2. 2.Graduate School of DesignKyushu UniversityFukuokaJapan
  3. 3.Graduate School of EngineeringGifu UniversityGifuJapan

Personalised recommendations