Skip to main content

Integrated Vascular Engineering: Vascularization of Reconstructed Tissue

  • Chapter
  • First Online:
Vascular Engineering

Abstract

In this chapter, we describe culture methods to construct microvascular networks as well as approaches to integrating capillary networks with 3D epithelial tissue-engineered constructs. First, culture models of microvascular networks such as in vitro angiogenesis and vasculogenesis models are introduced. Using these culture models, the roles of endothelial cells (ECs), such as endothelial tip, stalk, and phalanx cells, are demonstrated. Additionally, regulatory factors, including both biochemical and biophysical factors, are discussed in the context of 3D capillary formation, including the process of vascular development, growth, and maturation. Next, we focus on the use of microfluidics technologies for investigating capillary morphogenesis. Examples of 3D capillary formation assays with growth factor gradients and different extracellular matrix materials are described. Cocultures of ECs and the other cell types in microfluidic devices are also introduced to show the potential of microfluidic vascular formation models. The vascularization of constructed tissues is discussed from the viewpoints of horizontal and vertical approaches for combining capillary structures and epithelial tissues in vitro. Finally, the concept of integrated vascular engineering and future perspectives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anand-Apte B, Pepper MS, Voest E, Montesano R, Olsen B, Murphy G, Apte SS, Zetter B (1997) Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest Ophthalmol Vis Sci 38(5):817–823

    CAS  PubMed  Google Scholar 

  • Antonelli-Orlidge A, Saunders KB, Smith SR, D’Amore PA (1989) An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci U S A 86(12):4544–4548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–23

    Article  CAS  PubMed  Google Scholar 

  • Au P, Tam J, Fukumura D, Jain RK (2008) Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111(9):4551–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auger FA, Gibot L, Lacroix D (2013) The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng 15:177–200

    Article  CAS  PubMed  Google Scholar 

  • ávan der Meer AD, Dijke P, den Berg A (2013) Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab Chip 13:3562–3568

    Article  PubMed  CAS  Google Scholar 

  • Baker B, Trappmann B, Stapleton SC, Toro E, Chen CS (2013) Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 13:3246–3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayless KJ, Davis GE (2003) Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem Biophys Res Commun 312(4):903–913

    Article  CAS  PubMed  Google Scholar 

  • Berthod F, Germain L, Tremblay N, Auger FA (2006) Extracellular matrix deposition by fibroblasts is necessary to promote capillary-like tube formation in vitro. J Cell Physiol 207(2):491–498

    Article  CAS  PubMed  Google Scholar 

  • Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772

    Article  CAS  PubMed  Google Scholar 

  • Bikfalvi A, Sauzeau C, Moukadiri H, Maclouf J, Busso N, Bryckaert M, Plouet J, Tobelem G (1991) Interaction of vasculotropin/vascular endothelial cell growth factor with human umbilical vein endothelial cells: binding, internalization, degradation, and biological effects. J Cell Physiol 149(1):50–59

    Article  CAS  PubMed  Google Scholar 

  • Birdwell CR, Gospodarowicz D, Nicholson GL (1977) Factors from 3T3 cells stimulate proliferation of cultured vascular endothelial cells. Nature 268(5620):528–531

    Article  CAS  PubMed  Google Scholar 

  • Bischel LL, Young EW, Mader BR, Beebe DJ (2013) Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials 34(5):1471–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borenstein JT et al (2010) Functional endothelialized microvascular networks with circular cross-sections in a tissue culture substrate. Biomed Microdevices 12:71–79

    Article  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, De Smet F, Loges S, Mazzone M (2009) Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat Rev Clin Oncol 6(6):315–326

    Article  CAS  PubMed  Google Scholar 

  • Carrion B et al (2010) Recreating the perivascular niche ex vivo using a microfluidic approach. Biotechnol Bioeng 107:1020–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaw K, Manimaran M, Tay E, Swaminathan S (2007) Multi-step microfluidic device for studying cancer metastasis. Lab Chip 7:1041–1047

    Article  CAS  PubMed  Google Scholar 

  • Chen MB, Whisler JA, Jeon JS, Kamm RD (2013) Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr Biol 5:1262–1271

    Article  CAS  Google Scholar 

  • Chrobak KM, Potter DR, Tien J (2006) Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71:185–196

    Article  CAS  PubMed  Google Scholar 

  • Chung S et al (2009a) Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9:269–275

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Sudo R, Zervantonakis IK, Rimchala T, Kamm RD (2009b) Surface‐treatment‐induced three‐dimensional capillary morphogenesis in a microfluidic platform. Adv Mater 21:4863–4867

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Sudo R, Vickerman V, Zervantonakis IK, Kamm RD (2010) Microfluidic platforms for studies of angiogenesis, cell migration, and cell–cell interactions. Ann Biomed Eng 38:1164–1177

    Article  PubMed  Google Scholar 

  • Colgan OC et al (2007) Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress. Am J Physioly-Heart Circ Physiol 292:H3190–H3197

    Article  CAS  Google Scholar 

  • Crocker DJ, Murad TM, Geer JC (1970) Role of the pericyte in wound healing. An ultrastructural study. Exp Mol Pathol 13(1):51–65

    Article  CAS  PubMed  Google Scholar 

  • Dai X et al (2011) A novel in vitro angiogenesis model based on a microfluidic device. Chin Sci Bull 56:3301–3309

    Article  CAS  Google Scholar 

  • Davis GE, Bayless KJ, Mavila A (2002) Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat Rec 268(3):252–275

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Flores L, Gutiérrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martín-Vasallo P, Díaz-Flores L Jr (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24(7):909–969

    PubMed  Google Scholar 

  • Estrada R et al (2011) Endothelial cell culture model for replication of physiological profiles of pressure, flow, stretch, and shear stress in vitro. Anal Chem 83:3170–3177

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Golden AP, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720–725

    Article  CAS  PubMed  Google Scholar 

  • Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A 87(17):6624–6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith LG, Naughton G (2002) Tissue engineering – current challenges and expanding opportunities. Science 295(5557):1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7(3):211–24

    Article  CAS  PubMed  Google Scholar 

  • Han S, Yan JJ, Shin Y, Jeon JJ, Won J, Jeong HE, Kamm RD, Kim YJ, Chung S (2012) A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Lab Chip 12:3861–3865

    Google Scholar 

  • Hartlapp I, Abe R, Saeed RW, Peng T, Voelter W, Bucala R, Metz CN (2001) Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J 15(12):2215–2224

    Article  CAS  PubMed  Google Scholar 

  • Hellström M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalén M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780

    Article  PubMed  CAS  Google Scholar 

  • Helm CL, Fleury ME, Zisch AH, Boschetti F, Swartz MA (2005) Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc Natl Acad Sci U S A 102(44):15779–15784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández Vera R, Genové E, Alvarez L, Borrós S, Kamm R, Lauffenburger D, Semino CE (2009) Interstitial fluid flow intensity modulates endothelial sprouting in restricted Src-activated cell clusters during capillary morphogenesis. Tissue Eng A 15(1):175–185

    Article  CAS  Google Scholar 

  • Hiraki Y, Inoue H, Iyama K, Kamizono A, Ochiai M, Shukunami C, Iijima S, Suzuki F, Kondo J (1997) Identification of chondromodulin I as a novel endothelial cell growth inhibitor. Purification and its localization in the avascular zone of epiphyseal cartilage. J Biol Chem 272(51):32419–32426

    Article  CAS  PubMed  Google Scholar 

  • Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley JR, Balaji S, Narmoneva DA (2010) Complex temporal regulation of capillary morphogenesis by fibroblasts. Am J Physiol Cell Physiol 299(2):C444–C453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwa AJ, Fry RC, Sivaraman A, So PT, Samson LD, Stolz DB, Griffith LG (2007) Rat liver sinusoidal endothelial cells survive without exogenous VEGF in 3D perfused co-cultures with hepatocytes. FASEB J 21:2564–2579

    Article  CAS  PubMed  Google Scholar 

  • Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL (2013) In vitro model of tumor cell extravasation. PLoS One 8:e56910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, Moretti M, Kamm RD (2014) Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr Biol (Camb) 6(5):555–63

    Article  CAS  Google Scholar 

  • Jeong GS, Kwon GH, Kang AR, Jung BY, Park Y, Chung S, Lee SH (2011a) Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel. Biomed Microdevices 13(4):717–723

    Article  CAS  PubMed  Google Scholar 

  • Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee SH, Chung S (2011b) Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Anal Chem 83(22):8454–8459

    Article  CAS  PubMed  Google Scholar 

  • Kalchman J, Fujioka S, Chung S, Kikkawa Y, Mitaka T, Kamm RD, Tanishita K, Sudo R (2013) A three-dimensional microfluidic tumor cell migration assay to screen the effect of anti-migratory drugs and interstitial flow. Microfluid Nanofluid 14:969–981

    Article  CAS  Google Scholar 

  • Kang H, Bayless KJ, Kaunas R (2008) Fluid shear stress modulates endothelial cell invasion into three-dimensional collagen matrices. Am J Physiol Heart Circ Physiol 295(5):H2087–H2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasuya J, Sudo R, Mitaka T, Ikeda M, Tanishita K (2011) Hepatic stellate cell-mediated three-dimensional hepatocyte and endothelial cell triculture model. Tissue Eng A 17(3–4):361–370

    Article  Google Scholar 

  • Kasuya J, Sudo R, Mitaka T, Ikeda M, Tanishita K (2012a) Spatio-temporal control of hepatic stellate cell-endothelial cell interactions for reconstruction of liver sinusoids in vitro. Tissue Eng A 18(9–10):1045–1056

    Article  CAS  Google Scholar 

  • Kasuya J, Sudo R, Tamogami R, Masuda G, Mitaka T, Ikeda M, Tanishita K (2012b) Reconstruction of 3D stacked hepatocyte tissues using degradable, microporous poly(d, l-lactide-co-glycolide) membranes. Biomaterials 33(9):2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Kasuya J, Sudo R, Masuda G, Mitaka T, Ikeda M, Tanishita K (2015) Reconstruction of hepatic stellate cell-incorporated liver capillary structures in small hepatocyte tri-culture using microporous membranes. J Tissue Eng Regen Med 9(3):247–56

    Article  CAS  PubMed  Google Scholar 

  • Kaunas R, Kang H, Bayless KJ (2011) Synergistic regulation of angiogenic sprouting by biochemical factors and wall shear stress. Cell Mol Bioeng 4(4):547–559

    Article  PubMed  PubMed Central  Google Scholar 

  • Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 103:2480–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khademhosseini A, Vacanti JP, Langer R (2009) Progress in tissue engineering. Sci Am 300(5):64–71

    Article  CAS  PubMed  Google Scholar 

  • Kieda C et al (2006) Suppression of hypoxia-induced HIF-1α and of angiogenesis in endothelial cells by myo-inositol trispyrophosphate-treated erythrocytes. Proc Natl Acad Sci 103:15576–15581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim L, Toh YC, Voldman J, Yu H (2007) A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 7:681–694

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Chung S, Yuchun L, Kim MC, Chan JK, Asada HH, Kamm RD (2012) In vitro angiogenesis assay for the study of cell-encapsulation therapy. Lab Chip 12(16):2942–2950

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lee H, Chung M, Jeon NL (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489–1500

    Article  CAS  PubMed  Google Scholar 

  • Lafleur MA, Handsley MM, Knäuper V, Murphy G, Edwards DR (2002) Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J Cell Sci 115(Pt 17):3427–3438

    CAS  PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Kim S, Chung M, Kim JH, Jeon NL (2014) A bioengineered array of 3D microvessels for vascular permeability assay. Microvasc Res 91:90–98

    Article  CAS  PubMed  Google Scholar 

  • Liu M-C et al (2013) Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Lab Chip 13:1743–1753

    Article  CAS  PubMed  Google Scholar 

  • Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng B Rev 15(3):353–370

    Article  CAS  Google Scholar 

  • Luni C, Serena E, Elvassore N (2014) Human-on-chip for therapy development and fundamental science. Curr Opin Biotechnol 25:45–50

    Article  CAS  PubMed  Google Scholar 

  • Mack PJ et al (2009) Biomechanical regulation of endothelium-dependent events critical for adaptive remodeling. J Biol Chem 284:8412–8420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maione TE, Gray GS, Petro J, Hunt AJ, Donner AL, Bauer SI, Carson HF, Sharpe RJ (1990) Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247(4938):77–79

    Article  CAS  PubMed  Google Scholar 

  • Mansbridge JN, Liu K, Pinney RE, Patch R, Ratcliffe A, Naughton GK (1999) Growth factors secreted by fibroblasts: role in healing diabetic foot ulcers. Diabetes Obes Metab 1(5):265–279

    Article  CAS  PubMed  Google Scholar 

  • Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T, Jonckx B, Tian YM, Lanahan AA, Pollard P, Ruiz de Almodovar C, De Smet F, Vinckier S, Aragonés J, Debackere K, Luttun A, Wyns S, Jordan B, Pisacane A, Gallez B, Lampugnani MG, Dejana E, Simons M, Ratcliffe P, Maxwell P, Carmeliet P (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136:839–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montesano R, Orci L (1985) Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42(2):469–477

    Article  CAS  PubMed  Google Scholar 

  • Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L (1986) Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A 83(19):7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montesano R, Pepper MS, Belin D, Vassalli JD, Orci L (1988) Induction of angiogenesis in vitro by vanadate, an inhibitor of phosphotyrosine phosphatases. J Cell Physiol 134(3):460–6

    Article  CAS  PubMed  Google Scholar 

  • Montesano R, Pepper MS, Orci L (1993) Paracrine induction of angiogenesis in vitro by Swiss 3T3 fibroblasts. J Cell Sci 105(Pt 4):1013–1024

    CAS  PubMed  Google Scholar 

  • Moya ML, Hsu YH, Lee AP, Hughes CC, George SC (2013) In vitro perfused human capillary networks. Tissue Eng C Methods 19(9):730–737

    Article  CAS  Google Scholar 

  • Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–10

    Article  CAS  PubMed  Google Scholar 

  • Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CC (2011) The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell 22(20):3791–3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng CP, Helm CL, Swartz MA (2004) Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc Res 68(3):258–264

    Article  PubMed  Google Scholar 

  • Nguyen D-HT et al (2013) Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci 110:6712–6717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328

    Article  PubMed  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    Article  PubMed  Google Scholar 

  • Orlidge A, D’Amore PA (1987) Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol 105(3):1455–1462

    Article  CAS  PubMed  Google Scholar 

  • Penn JS (2008) Retinal and choroidal angiogenesis. Springer Netherlands

    Book  Google Scholar 

  • Pepper MS, Ferrara N, Orci L, Montesano R (1992) Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189(2):824–831

    Article  CAS  PubMed  Google Scholar 

  • Pepper MS, Vassalli JD, Orci L, Montesano R (1993) Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis. Exp Cell Res 204(2):356–363

    Article  CAS  PubMed  Google Scholar 

  • Pepper MS, Ferrara N, Orci L, Montesano R (1995) Leukemia inhibitory factor (LIF) inhibits angiogenesis in vitro. J Cell Sci 108(Pt 1):73–83

    CAS  PubMed  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674

    Article  CAS  PubMed  Google Scholar 

  • Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  CAS  PubMed  Google Scholar 

  • Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26(8):434–441

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti E (1996) Brain extracellular matrix. Glycobiology 6:489–492

    Article  CAS  PubMed  Google Scholar 

  • Saunders WB, Bohnsack BL, Faske JB, Anthis NJ, Bayless KJ, Hirschi KK, Davis GE (2006) Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol 175(1):179–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seebach J et al (2000) Endothelial barrier function under laminar fluid shear stress. Lab Investig 80:1819–1831

    Article  CAS  PubMed  Google Scholar 

  • Semino CE, Kamm RD, Lauffenburger DA (2006) Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow. Exp Cell Res 312(3):289–298

    CAS  PubMed  Google Scholar 

  • Shamloo A, Heilshorn SC (2010) Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip 10:3061–3068

    Article  CAS  PubMed  Google Scholar 

  • Shamloo A, Ma N, Poo M-M, Sohn LL, Heilshorn SC (2008) Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8:1292–1299

    Article  CAS  PubMed  Google Scholar 

  • Shamloo A, Xu H, Heilshorn S (2011) Mechanisms of vascular endothelial growth factor-induced pathfinding by endothelial sprouts in biomaterials. Tissue Eng A 18:320–330

    Article  CAS  Google Scholar 

  • Shao J et al (2009) Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab Chip 9:3118–3125

    Article  CAS  PubMed  Google Scholar 

  • Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7(11):1031–1038

    CAS  PubMed  Google Scholar 

  • Shin Y et al (2011) In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab Chip 11:2175–2181

    Article  CAS  PubMed  Google Scholar 

  • Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD, Chung S (2012) Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc 7(7):1247–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin Y et al (2014) Reconstituting vascular microenvironment of neural stem cell niche in three‐dimensional extracellular matrix. Adv Healthcare Mater 3:1457–1464

    Article  CAS  Google Scholar 

  • Sieminski AL, Hebbel RP, Gooch KJ (2004) The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp Cell Res 297(2):574–584

    Article  CAS  PubMed  Google Scholar 

  • Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci 108:15342–15347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JW et al (2005) Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal Chem 77:3993–3999

    Article  CAS  PubMed  Google Scholar 

  • Song JW et al (2009) Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 4:e5756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soriano JV et al (2004) Inhibition of angiogenesis by growth factor receptor bound protein 2-Src homology 2 domain bound antagonists. Mol Cancer Ther 3:1289–1299

    CAS  PubMed  Google Scholar 

  • Srigunapalan S, Lam C, Wheeler AR, Simmons CA (2011) A microfluidic membrane device to mimic critical components of the vascular microenvironment. Biomicrofluidics 5:013409

    Article  PubMed Central  CAS  Google Scholar 

  • Sudo R (2014) Multiscale tissue engineering for liver reconstruction. Organogenesis 10(2):216–224

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudo R, Mitaka T, Ikeda M, Tanishita K (2005) Reconstruction of 3D stacked-up structures by rat small hepatocytes on microporous membranes. FASEB J 19:1695–1717

    CAS  PubMed  Google Scholar 

  • Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, Kamm RD (2009) Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J 23(7):2155–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M, Waltari M, Hellström M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Ylä-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660

    Article  CAS  PubMed  Google Scholar 

  • Tardy Y, Resnick N, Nagel T, Gimbrone M, Dewey C (1997) Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler Thromb Vasc Biol 17:3102–3106

    Article  CAS  PubMed  Google Scholar 

  • Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, van Noort D, Hutmacher DW, Yu H (2007) A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7:302–309

    Article  CAS  PubMed  Google Scholar 

  • Ueda A, Koga M, Ikeda M, Kudo S, Tanishita K (2004) Effect of shear stress on microvessel network formation of endothelial cells with in vitro three-dimensional model. Am J Physiol Heart Circ Physiol 287(3):H994–H1002

    Article  CAS  PubMed  Google Scholar 

  • Vailhé B, Vittet D, Feige JJ (2001) In vitro models of vasculogenesis and angiogenesis. Lab Investig 81:439–452

    Article  PubMed  Google Scholar 

  • Vernon RB, Sage EH (1999) A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc Res 57(2):118–133

    Article  CAS  PubMed  Google Scholar 

  • Wanjare M, Kusuma S, Gerecht S (2013) Perivascular cells in blood vessel regeneration. Biotechnol J 8(4):434–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whisler JA, Chen MB, Kamm RD (2014) Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng C Methods 20(7):543–552

    Article  CAS  Google Scholar 

  • Wong KH, Truslow JG, Khankhel AH, Chan KL, Tien J (2012) Artificial lymphatic drainage systems for vascularized microfluidic scaffolds. J Biomed Mater Res A 101:2181–2190

    PubMed  Google Scholar 

  • Yamamoto K, Tanimura K, Mabuchi Y, Matsuzaki Y, Chung S, Kamm RD, Ikeda M, Tanishita K, Sudo R (2013) The stabilization effect of mesenchymal stem cells on the formation of microvascular networks in a microfluidic device. J Biomech Sci Eng 8(2):114–128

    Article  Google Scholar 

  • Yamamura N, Sudo R, Ikeda M, Tanishita K (2007) Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng 13(7):1443–1453

    Article  CAS  PubMed  Google Scholar 

  • Yeon JH, Ryu HR, Chung M, Hu QP, Jeon NL (2012) In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab Chip 12:2815–2822

    Article  CAS  PubMed  Google Scholar 

  • Young EW, Wheeler AR, Simmons CA (2007) Matrix-dependent adhesion of vascular and valvular endothelial cells in microfluidic channels. Lab Chip 7:1759–1766

    Article  CAS  PubMed  Google Scholar 

  • Zervantonakis IK et al (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci 109:13515–13520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Zhao Z, Abdul Rahim NA, van Noort D, Yu H (2009) Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 9(22):3185–3392

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Liu T, Qin J (2012) A microfluidic-based device for study of transendothelial invasion of tumor aggregates in realtime. Lab Chip 12:2837–2842

    Article  CAS  PubMed  Google Scholar 

  • Zheng C et al (2012) Quantitative study of the dynamic tumor–endothelial cell interactions through an integrated microfluidic coculture system. Anal Chem 84:2088–2093

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y et al (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci 109:9342–9347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grants-in-Aid for Scientific Research (25282135, 25560208, 25249018) from the Japan Society for Promotions of Science, and by the Human Resources Program in Energy Technology of the KETEP grant from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20124010203250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Sudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Sudo, R., Chung, S., Shin, Y., Tanishita, K. (2016). Integrated Vascular Engineering: Vascularization of Reconstructed Tissue. In: Tanishita, K., Yamamoto, K. (eds) Vascular Engineering. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54801-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54801-0_16

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54800-3

  • Online ISBN: 978-4-431-54801-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics