Skip to main content

Physical Therapy and Rehabilitation in Patients with Degenerative Cerebellar Diseases: Current Evidence and Future Direction

  • Chapter
Neurodegenerative Disorders as Systemic Diseases
  • 857 Accesses

Abstract

After brain damage, use-dependent plasticity of the spared neural network plays a crucial role in improving neural deficits and promoting motor learning and relearning using the impaired limbs. In degenerative cerebellar diseases, it is to be elucidated whether a similar mechanism works or not, since pathological processes are basically progressive. The fundamental question regarding the efficacy of neurorehabilitation in cerebellar degenerative diseases, is whether it is beneficial in terms of both the short- and long-term effect. To answer this question, two important issues need to be considered. The first is whether impaired motor learning due to cerebellar dysfunction is compensated for by repeated practice, since the cerebellum plays a crucial role in motor learning. The second issue is how long functional gains can be sustained provided that intensive rehabilitation results in significant gains. Recent studies have shown that intensive rehabilitation focusing on balance and mobility improves motor function for a period of up to 1 year in patients with degenerative cerebellar diseases. To obtain meaningful long-term gains, a combination of intermittent intensive short-term rehabilitation and home-based practice and support may be a practical way of managing patients. Future studies may elucidate a potential role of neuromodulation coupled with rehabilitative intervention to enhance the gains and to minimize functional decline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman DG, Schulz KF, Moher D, Egger M, Davidoff F, Elbourne D, Gotzsche PC, Lang T, Consort G (2001) The revised CONSORT statement for reporting randomized trials: explanation and elaboration. Ann Intern Med 134(8):663–694

    Article  CAS  PubMed  Google Scholar 

  • Burciu RG, Fritsche N, Granert O, Schmitz L, Sponemann N, Konczak J, Theysohn N, Gerwig M, van Eimeren T, Timmann D (2013) Brain changes associated with postural training in patients with cerebellar degeneration: a voxel-based morphometry study. J Neurosci 33(10):4594–4604

    Article  CAS  PubMed  Google Scholar 

  • Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS (1991) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, Lamy C, Bejot Y, Deltour S, Jaillard A, Niclot P, Guillon B, Moulin T, Marque P, Pariente J, Arnaud C, Loubinoux I (2011) Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 10(2):123–130

    Article  CAS  PubMed  Google Scholar 

  • deCharms RC (2008) Applications of real-time fMRI. Nat Rev Neurosci 9(9):720–729

    Article  CAS  PubMed  Google Scholar 

  • Dobkin BH, Plummer-D’Amato P, Elashoff R, Lee J (2010) International randomized clinical trial, stroke inpatient rehabilitation with reinforcement of walking speed (SIRROWS), improves outcomes. Neurorehabil Neural Repair 24(3):235–242

    Article  PubMed Central  PubMed  Google Scholar 

  • Doya K (1999) What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw 12(7–8):961–974

    Article  PubMed  Google Scholar 

  • Doyon J (2008) Motor sequence learning and movement disorders. Curr Opin Neurol 21:478–483

    Article  PubMed  Google Scholar 

  • Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15(2):161–167

    Article  CAS  PubMed  Google Scholar 

  • Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE, Dobkin BH, Rose DK, Tilson JK, Cen S, Hayden SK, Leaps Investigative Team (2011) Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med 364(21):2026–2036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feeney DM, Gonzalez A, Law WA (1982) Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 217(4562):855–857

    Article  CAS  PubMed  Google Scholar 

  • Fryer JD, Yu P, Kang H, Mandel-Brehm C, Carter AN, Crespo-Barreto J, Gao Y, Flora A, Shaw C, Orr HT et al (2011) Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua. Science 334(6056):690–693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujimoto H, Mihara M, Hattori N, Hatakenaka M, Kawano T, Yagura H, Miyai I, Mochizuki H (2014) Cortical changes underlying balance recovery in patients with hemiplegic stroke. NeuroImage 85:547–554

    Article  PubMed  Google Scholar 

  • Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, Galea JM, Groiss SJ, Hiraoka K, Kassavetis P, Lesage E, Manto M, Miall RC, Priori A, Sadnicka A, Ugawa Y, Ziemann U (2014) Non-invasive cerebellar stimulation--a consensus paper. Cerebellum 13(1):121–138

    Article  CAS  PubMed  Google Scholar 

  • Hatakenaka M, Miyai I, Mihara M, Yagura H, Hattori N (2012) Impaired motor learning by a pursuit rotor test reduces functional outcomes during rehabilitation of poststroke ataxia. Neurorehabil Neural Repair 26:293–300

    Article  PubMed  Google Scholar 

  • Ilg W, Synofzik M, Brotz D, Burkard S, Giese MA, Schols L (2009) Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 73(22):1823–1830

    Article  CAS  PubMed  Google Scholar 

  • Ilg W, Brotz D, Burkard S, Giese MA, Schols L, Synofzik M (2010) Long-term effects of coordinative training in degenerative cerebellar disease. Mov Disord 25(13):2239–2246

    Article  PubMed  Google Scholar 

  • Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, Claassen J, Feil K, Kalla R, Miyai I, Nachbauer W et al (2014) Consensus paper: management of degenerative cerebellar disorders. Cerebellum 13(2):248–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81(3):1143–1195

    CAS  PubMed  Google Scholar 

  • Ito M, Kano M (1982) Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 33(3):253–258

    Article  CAS  PubMed  Google Scholar 

  • Jacobi H, Bauer P, Giunti P, Labrum R, Sweeney MG, Charles P, Durr A, Marelli C, Globas C, Linnemann C et al (2011) The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology 77(11):1035–1041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  CAS  PubMed  Google Scholar 

  • Keith RA, Granger CV, Hamilton BB, Sherwin FS (1987) The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil 1:6–18

    CAS  PubMed  Google Scholar 

  • Kitazawa S (2013) Role of cerebellum in control of voluntary movement. In Tsuji S, Nishizawa ME (eds) Cerebellum and ataxia. What does the cerebellum do? Nakayama shoten, pp 17–32 (in Japanese)

    Google Scholar 

  • Klockgether T, Ludtke R, Kramer B, Abele M, Burk K, Schols L, Riess O, Laccone F, Boesch S, Lopes-Cendes I et al (1998) The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain 121:589–600

    Article  PubMed  Google Scholar 

  • Kwakkel G, Wagenaar RC, Twisk JW, Lankhorst GJ, Koetsier JC (1999) Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet 354(9174):191–196

    Article  CAS  PubMed  Google Scholar 

  • Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I et al (2004) Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke 35(11):2529–2539

    Article  PubMed  Google Scholar 

  • Langhorne P, Coupar F, Pollock A (2009) Motor recovery after stroke: a systematic review. Lancet Neurol 8(8):741–754

    Article  PubMed  Google Scholar 

  • Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, Bever CT, Bravata DM, Duncan PW, Corn BH, Maffucci AD, Nadeau SE, Conroy SS, Powell JM, Huang GD, Peduzzi P (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 362(19):1772–1783

    Article  CAS  PubMed  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119:1183–1198

    Article  PubMed  Google Scholar 

  • Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S (2007) Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke? NeuroImage 37(4):1338–1345

    Article  PubMed  Google Scholar 

  • Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S (2008) Role of the prefrontal cortex in human balance control. NeuroImage 43(2):329–336

    Article  PubMed  Google Scholar 

  • Mihara M, Miyai I, Hattori N, Hatakenaka M, Yagura H, Kawano T, Kubota K (2012a) Cortical control of postural balance in patients with hemiplegic stroke. Neuroreport 23(5):314–319

    Article  PubMed  Google Scholar 

  • Mihara M, Miyai I, Hattori N, Hatakenaka M, Yagura H, Kawano T, Okibayashi M, Danjo N, Ishikawa A, Inoue Y et al (2012b) Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation. PLoS One 7(3):e32234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mihara M, Hattori N, Hatakenaka M, Yagura H, Kawano T, Hino T, Miyai I (2013) Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study. Stroke 44(4):1091–1098

    Article  PubMed  Google Scholar 

  • Miyai I, Reding M (1998) Effects of antidepressants on functional recovery following stroke: a double-blind study. Neurorehabil Neural Repair 12:5–13

    Article  Google Scholar 

  • Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. NeuroImage 14(5):1186–1192

    Article  CAS  PubMed  Google Scholar 

  • Miyai I, Suzuki M, Hatakenaka M, Kubota K (2006) Effect of body weight support on cortical activation during gait in patients with stroke. Exp Brain Res 169(1):85–91

    Article  PubMed  Google Scholar 

  • Miyai I, Ito M, Hattori N, Mihara M, Hatakenaka M, Yagura H, Sobue G, Nishizawa M (2012) Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabil Neural Repair 26(5):515–522

    Article  PubMed  Google Scholar 

  • Nakajima K, Yasui K, Yabe I, Sasaki H, Arai K, Kanai K, Yoshida K, Ito M, Sobue G, Onodera O, Nishizawa M (2009) Natural history of Machado-Joseph disease and SCA 6. Annual report of the Research Committee for Ataxic Diseases, Research on Measures for Intractable Diseases, Health and Labour Sciences Research Grants from the Ministry of Health, Labor and Welfare, pp 66–67 (in Japanese)

    Google Scholar 

  • Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16(2):785–807

    CAS  PubMed  Google Scholar 

  • Payoux P, Brefel-Courbon C, Ory-Magne F, Regragui W, Thalamas C, Balduyck S, Durif F, Azulay JP, Tison F, Blin O et al (2010) Motor activation in multiple system atrophy and Parkinson disease: a PET study. Neurology 75(13):1174–1180

    Article  CAS  PubMed  Google Scholar 

  • Scheidtmann K, Fries W, Muller F, Koenig E (2001) Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study. Lancet 358(9284):787–790

    Article  CAS  PubMed  Google Scholar 

  • Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS et al (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66(11):1717–1720

    Article  CAS  PubMed  Google Scholar 

  • Schmitz-Hubsch T, Coudert M, Bauer P, Giunti P, Globas C, Baliko L, Filla A, Mariotti C, Rakowicz M, Charles P et al (2008) Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology 71(13):982–989

    Article  CAS  PubMed  Google Scholar 

  • Schultz W, Apicella P, Ljungberg T, Romo R, Scarnati E (1993) Reward-related activity in the monkey striatum and substantia nigra. Prog Brain Res 99:227–235

    Article  CAS  PubMed  Google Scholar 

  • Schulz KF, Altman DG, Moher D, Fergusson D (2010) CONSORT 2010 changes and testing blindness in RCTs. Lancet 375(9721):1144–1146

    Article  PubMed  Google Scholar 

  • Shiga Y, Tsuda T, Itoyama Y, Shimizu H, Miyazawa KI, Jin K, Yamazaki T (2002) Transcranial magnetic stimulation alleviates truncal ataxia in spinocerebellar degeneration. J Neurol Neurosurg Psychiatry 72(1):124–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sobue I, Takayanagi T, Nakanishi T, Tsubaki T, Uono M, Kinoshita M, Igata A, Miyazaki M, Yoshida M, Ando K (1983) Controlled trial of thyrotropin releasing hormone tartrate in ataxia of spinocerebellar degenerations. J Neurol Sci 61(2):235–248

    Article  CAS  PubMed  Google Scholar 

  • Subramanian L, Hindle JV, Johnston S, Roberts MV, Husain M, Goebel R, Linden D (2011) Real-time functional magnetic resonance imaging neurofeedback for treatment of Parkinson’s disease. J Neurosci 31:16309–16317

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, Kubota K (2004) Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. NeuroImage 23(3):1020–1026

    Article  PubMed  Google Scholar 

  • Taub E, Uswatte G, Mark VW, Morris DM, Barman J, Bowman MH, Bryson C, Delgado A, Bishop-McKay S (2013) Method for enhancing real-world use of a more affected arm in chronic stroke: transfer package of constraint-induced movement therapy. Stroke 44(5):1383–1388

    Article  PubMed Central  PubMed  Google Scholar 

  • Topka H, Valls-Sole J, Massaquoi SG, Hallett M (1993) Deficit in classical conditioning in patients with cerebellar degeneration. Brain 116:961–969

    Article  PubMed  Google Scholar 

  • Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM et al (1997) International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145(2):205–211

    Article  CAS  PubMed  Google Scholar 

  • Tsuji S, Onodera O, Goto J, Nishizawa M (2008) Sporadic ataxias in Japan--a population-based epidemiological study. Cerebellum 7:189–197

    Article  CAS  PubMed  Google Scholar 

  • Walker-Batson D, Smith P, Curtis S, Unwin H, Greenlee R (1995) Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke 26(12):2254–2259

    Article  CAS  PubMed  Google Scholar 

  • Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126(Pt 11):2476–2496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS (1992) Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 31(5):463–472

    Article  CAS  PubMed  Google Scholar 

  • Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS (1993) Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 33(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D (2006) Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296(17):2095–2104

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3(Suppl):1212–1217

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7–8):1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Yabe I, Matsushima M, Soma H, Basri R, Sasaki H (2008) Usefulness of the Scale for Assessment and Rating of Ataxia (SARA). J Neurol Sci 266(1–2):164–166

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Miyai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Miyai, I. (2015). Physical Therapy and Rehabilitation in Patients with Degenerative Cerebellar Diseases: Current Evidence and Future Direction. In: Wada, K. (eds) Neurodegenerative Disorders as Systemic Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54541-5_10

Download citation

Publish with us

Policies and ethics