Skip to main content

Advertisement

Log in

Consensus Paper: Management of Degenerative Cerebellar Disorders

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Treatment of motor symptoms of degenerative cerebellar ataxia remains difficult. Yet there are recent developments that are likely to lead to significant improvements in the future. Most desirable would be a causative treatment of the underlying cerebellar disease. This is currently available only for a very small subset of cerebellar ataxias with known metabolic dysfunction. However, increasing knowledge of the pathophysiology of hereditary ataxia should lead to an increasing number of medically sensible drug trials. In this paper, data from recent drug trials in patients with recessive and dominant cerebellar ataxias will be summarized. There is consensus that up to date, no medication has been proven effective. Aminopyridines and acetazolamide are the only exception, which are beneficial in patients with episodic ataxia type 2. Aminopyridines are also effective in a subset of patients presenting with downbeat nystagmus. As such, all authors agreed that the mainstays of treatment of degenerative cerebellar ataxia are currently physiotherapy, occupational therapy, and speech therapy. For many years, well-controlled rehabilitation studies in patients with cerebellar ataxia were lacking. Data of recently published studies show that coordinative training improves motor function in both adult and juvenile patients with cerebellar degeneration. Given the well-known contribution of the cerebellum to motor learning, possible mechanisms underlying improvement will be outlined. There is consensus that evidence-based guidelines for the physiotherapy of degenerative cerebellar ataxia need to be developed. Future developments in physiotherapeutical interventions will be discussed including application of non-invasive brain stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Strupp M, Schuler O, Krafczyk S, Jahn K, Schautzer F, Buttner U, et al. Treatment of downbeat nystagmus with 3,4-diaminopyridine: a placebo-controlled study. Neurology. 2003;61:165–70.

    CAS  PubMed  Google Scholar 

  2. Strupp M, Kalla R, Claassen J, Adrion C, Mansmann U, Klopstock T, et al. A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology. 2011;77:269–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Kandel M, Beis JM, Le Chapelain L, Guesdon H, Paysant J. Non-invasive cerebral stimulation for the upper limb rehabilitation after stroke: a review. Ann Phys Rehabil Med. 2012;55:657–80.

    CAS  PubMed  Google Scholar 

  4. Bowden MG, Woodbury ML, Duncan PW. Promoting neuroplasticity and recovery after stroke: future directions for rehabilitation clinical trials. Curr Opin Neurol. 2013;26:37–42.

    PubMed  Google Scholar 

  5. Walker MF, Sunnerhagen KS, Fisher RJ. Evidence-based community stroke rehabilitation. Stroke. 2013;44:293–7.

    PubMed  Google Scholar 

  6. Ilg W, Synofzik M, Brotz D, Burkard S, Giese MA, Schols L. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology. 2009;73:1823–30.

    CAS  PubMed  Google Scholar 

  7. Miyai I, Ito M, Hattori N, Mihara M, Hatakenaka M, Yagura H, et al. Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabil Neural Repair. 2012;26:515–22.

    PubMed  Google Scholar 

  8. Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell. 1996;87:543–52.

    CAS  PubMed  Google Scholar 

  9. Jen J, Kim GW, Baloh RW. Clinical spectrum of episodic ataxia type 2. Neurology. 2004;62:17–22.

    CAS  PubMed  Google Scholar 

  10. Griggs RC, Moxley 3rd RT, Lafrance RA, McQuillen J. Hereditary paroxysmal ataxia: response to acetazolamide. Neurology. 1978;28:1259–64.

    CAS  PubMed  Google Scholar 

  11. Strupp M, Kalla R, Dichgans M, Freilinger T, Glasauer S, Brandt T. Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology. 2004;62:1623–5.

    CAS  PubMed  Google Scholar 

  12. Alvina K, Khodakhah K. The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci. 2010;30:7258–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Weisz CJ, Raike RS, Soria-Jasso LE, Hess EJ. Potassium channel blockers inhibit the triggers of attacks in the calcium channel mouse mutant tottering. J Neurosci. 2005;25:4141–5.

    CAS  PubMed  Google Scholar 

  14. Claassen J, Teufel J, Kalla R, Spiegel R, Strupp M. Effects of dalfampridine on attacks in patients with episodic ataxia type 2: an observational study. J Neurol. 2013;260:668–9.

    PubMed  Google Scholar 

  15. Hufner K, Stephan T, Kalla R, Deutschlander A, Wagner J, Holtmannspotter M, et al. Structural and functional MRIs disclose cerebellar pathologies in idiopathic downbeat nystagmus. Neurology. 2007;69:1128–35.

    CAS  PubMed  Google Scholar 

  16. Wagner JN, Glaser M, Brandt T, Strupp M. Downbeat nystagmus: aetiology and comorbidity in 117 patients. J Neurol Neurosurg Psychiatry. 2008;79:672–7.

    CAS  PubMed  Google Scholar 

  17. Kalla R, Deutschlander A, Hufner K, Stephan T, Jahn K, Glasauer S, et al. Detection of floccular hypometabolism in downbeat nystagmus by fMRI. Neurology. 2006;66:281–3.

    CAS  PubMed  Google Scholar 

  18. Kalla R, Glasauer S, Buttner U, Brandt T, Strupp M. 4-Aminopyridine restores vertical and horizontal neural integrator function in downbeat nystagmus. Brain. 2007;130:2441–51.

    PubMed  Google Scholar 

  19. Tsunemi T, Ishikawa K, Tsukui K, Sumi T, Kitamura K, Mizusawa H. The effect of 3,4-diaminopyridine on the patients with hereditary pure cerebellar ataxia. J Neurol Sci. 2010;292:81–4.

    CAS  PubMed  Google Scholar 

  20. Kalla R, Spiegel R, Claassen J, Bardins S, Hahn A, Schneider E, et al. Comparison of 10-mg doses of 4-aminopyridine and 3,4-diaminopyridine for the treatment of downbeat nystagmus. J Neuroophthalmol. 2011;31:320–5.

    PubMed  Google Scholar 

  21. Judge SI, Bever Jr CT. Potassium channel blockers in multiple sclerosis: neuronal Kv channels and effects of symptomatic treatment. Pharmcol Ther. 2006;111:224–59.

    CAS  Google Scholar 

  22. Claassen J, Spiegel R, Kalla R, Faldon M, Kennard C, Danchaivijitr C, et al. A randomised double-blind, cross-over trial of 4-aminopyridine for downbeat nystagmus—effects on slowphase eye velocity, postural stability, locomotion and symptoms. J Neurol Neurosurg Psychiatry. 2013. doi:10.1136/jnnp-2012-304736

  23. Feil K, Claaßen J, Bardins S, Teufel J, Krafczyk S, Schneider E, et al. Effect of chlorzoxazone in patients with downbeat nystagmus: a pilot trial. Neurology. 2013;81:1152–8.

    CAS  PubMed  Google Scholar 

  24. Averbuch-Heller L, Tusa RJ, Fuhry L, Rottach KG, Ganser GL, Heide W, et al. A double-blind controlled study of gabapentin and baclofen as treatment for acquired nystagmus. Ann Neurol. 1997;41:818–25.

    CAS  PubMed  Google Scholar 

  25. Schniepp R, Jakl V, Wuehr M, Havla J, Kumpfel T, Dieterich M, et al. Treatment with 4-aminopyridine improves upper limb tremor of a patient with multiple sclerosis: a video case report. Mult Scler. 2013;19:506–8.

    PubMed  Google Scholar 

  26. Schniepp R, Wuehr M, Ackl N, Danek A, Brandt T, Strupp M, et al. 4-Aminopyridine improves gait variability in cerebellar ataxia due to CACNA 1A mutation. J Neurol. 2011;258:1708–11.

    PubMed  Google Scholar 

  27. Schniepp R, Wuehr M, Neuhaeusser M, Benecke AK, Adrion C, Brandt T, et al. 4-Aminopyridine and cerebellar gait: a retrospective case series. J Neurol. 2012;259:2491–3.

    PubMed  Google Scholar 

  28. Giordano I, Bogdanow M, Jacobi H, Jahn K, Minnerop M, Schoels L, et al. Experience in a short-term trial with 4-aminopyridine in cerebellar ataxia. J Neurol. 2013; 260:2175–6

    Google Scholar 

  29. Etzion Y, Grossman Y. Highly 4-aminopyridine sensitive delayed rectifier current modulates the excitability of guinea pig cerebellar Purkinje cells. Exp Brain Res. 2001;139:419–25.

    CAS  PubMed  Google Scholar 

  30. Hourez R, Servais L, Orduz D, Gall D, Millard I, de Kerchove d’Exaerde A, et al. Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci. 2011;31:11795–807.

    CAS  PubMed  Google Scholar 

  31. Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain. 2009;132:2688–98.

    CAS  PubMed  Google Scholar 

  32. Le Ber I, Dubourg O, Benoist JF, Jardel C, Mochel F, Koenig M, et al. Muscle coenzyme Q10 deficiencies in ataxia with oculomotor apraxia 1. Neurology. 2007;68:295–7.

    PubMed  Google Scholar 

  33. Synofzik M, Schicks J, Lindig T, Biskup S, Schmidt T, Hansel J, et al. Acetazolamide-responsive exercise-induced episodic ataxia associated with a novel homozygous DARS2 mutation. J Med Genet. 2011;48:713–5.

    CAS  PubMed  Google Scholar 

  34. Epplen C, Epplen JT, Frank G, Miterski B, Santos EJ, Schöls L. Differential stability of the (GAA)n tract in the Friedreich ataxia (STM7) gene. Hum Genet. 1997;99:834–6.

    CAS  PubMed  Google Scholar 

  35. Stemmler TL, Lesuisse E, Pain D, Dancis A. Frataxin and mitochondrial FeS cluster biogenesis. J Biol Chem. 2010;285:26737–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Di Prospero NA, Baker A, Jeffries N, Fischbeck KH. Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol. 2007;6:878–86.

    PubMed  Google Scholar 

  37. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145:205–11.

    CAS  PubMed  Google Scholar 

  38. Mariotti C, Solari A, Torta D, Marano L, Fiorentini C, Di Donato S. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology. 2003;60:1676–9.

    CAS  PubMed  Google Scholar 

  39. Schöls L, Vorgerd M, Schillings M, Skipka G, Zange J. Idebenone in patients with Friedreich ataxia. Neurosci Lett. 2001;306:169–72.

    PubMed  Google Scholar 

  40. Lagedrost SJ, Sutton MS, Cohen MS, Satou GM, Kaufman BD, Perlman SL, et al. Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am Heart J. 2011;161:639–45.

    CAS  PubMed  Google Scholar 

  41. Meier T, Perlman SL, Rummey C, Coppard NJ, Lynch DR. Assessment of neurological efficacy of idebenone in pediatric patients with Friedreich’s ataxia: data from a 6-month controlled study followed by a 12-month open-label extension study. J Neurol. 2012;259:284–91.

    CAS  PubMed  Google Scholar 

  42. Kearney M, Orrell RW, Fahey M, Pandolfo M. Antioxidants and other pharmacological treatments for Friedreich ataxia. Cochrane Database Syst Rev. 2012;4:CD007791. Review.

    Google Scholar 

  43. Lodi R, Hart PE, Rajagopalan B, Taylor DJ, Crilley JG, Bradley JL, et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol. 2001;49:590–6.

    CAS  PubMed  Google Scholar 

  44. Hart PE, Lodi R, Rajagopalan B, Bradley JL, Crilley JG, Turner C, et al. Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol. 2005;62:621–6.

    PubMed  Google Scholar 

  45. Cooper JM, Korlipara LV, Hart PE, Bradley JL, Schapira AH. Coenzyme Q10 and vitamin E deficiency in Friedreich’s ataxia: predictor of efficacy of vitamin E and coenzyme Q10 therapy. Eur J Neurol. 2008;15:1371–9.

    CAS  PubMed  Google Scholar 

  46. Lynch DR, Willi SM, Wilson RB, Cotticelli MG, Brigatti KW, Deutsch EC, et al. A0001 in Friedreich ataxia: biochemical characterization and effects in a clinical trial. Mov Disord. 2012;27:1026–33.

    CAS  PubMed  Google Scholar 

  47. Schöls L, Zange J, Abele M, Schillings M, Skipka G, Kuntz-Hehner S, et al. l-Carnitine and creatine in Friedreich’s ataxia. A randomized, placebo-controlled crossover trial. J Neural Transm. 2005;112:789–96.

    PubMed  Google Scholar 

  48. Velasco-Sánchez D, Aracil A, Montero R, Mas A, Jiménez L, O’Callaghan M, et al. Combined therapy with idebenone and deferiprone in patients with Friedreich’s ataxia. Cerebellum. 2011;10:1–8.

    PubMed  Google Scholar 

  49. Boesch S, Sturm B, Hering S, Goldenberg H, Poewe W, Scheiber-Mojdehkar B. Friedreich’s ataxia: clinical pilot trial with recombinant human erythropoietin. Ann Neurol. 2007;62:521–4.

    CAS  PubMed  Google Scholar 

  50. Subramony SH, May W, Lynch D, Gomez C, Fischbeck K, Hallett M, et al. Cooperative Ataxia Group. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology. 2005;64:1261–2.

    CAS  PubMed  Google Scholar 

  51. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.

    CAS  PubMed  Google Scholar 

  52. Boesch S, Sturm B, Hering S, Scheiber-Mojdehkar B, Steinkellner H, Goldenberg H, et al. Neurological effects of recombinant human erythropoietin in Friedreich’s ataxia: a clinical pilot trial. Mov Disord. 2008;23:1940–4.

    PubMed  Google Scholar 

  53. Mariotti C, Fancellu R, Caldarazzo S, Nanetti L, Di Bella D, Plumari M, et al. Erythropoietin in Friedreich ataxia: no effect on frataxin in a randomized controlled trial. Mov Disord. 2012;27:446–9.

    CAS  PubMed  Google Scholar 

  54. Gabsi S, Gouider-Khouja N, Belal S, Fki M, Kefi M, Turki I, et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol. 2001;8:477–81.

    CAS  PubMed  Google Scholar 

  55. Mariotti C, Gellera C, Rimoldi M, Mineri R, Uziel G, Zorzi G, et al. Ataxia with isolated vitamin E deficiency: neurological phenotype, clinical follow-up and novel mutations in TTPA gene in Italian families. Neurol Sci. 2004;25:130–7.

    CAS  PubMed  Google Scholar 

  56. Hentati F, El-Euch G, Bouhlal Y, Amouri R. Ataxia with vitamin E deficiency and abetalipoproteinemia. Handb Clin Neurol. 2012;103:295–305.

    PubMed  Google Scholar 

  57. Kohlschütter A. Abetalipoproteinemia. In: Klockgether T, editor. Handbook of ataxia disorders. New York: Marcel Dekker; 2000. p. 206–17.

    Google Scholar 

  58. Emmanuele V, López LC, Berardo A, Naini A, Tadesse S, Wen B, et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch Neurol. 2012;69:978–83.

    PubMed Central  PubMed  Google Scholar 

  59. Musumeci O, Naini A, Slonim AE, Skavin N, Hadjigeorgiou GL, Krawiecki N, et al. Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology. 2001;56:849–55.

    CAS  PubMed  Google Scholar 

  60. Artuch R, Brea-Calvo G, Briones P, Aracil A, Galvan M, Espinos C, et al. Cerebellar ataxia with coenzyme Q(10) deficiency: diagnosis and follow-up after coenzyme Q(10) supplementation. J Neurol Sci. 2006;246:153–8.

    CAS  PubMed  Google Scholar 

  61. Auré K, Benoist JF, Ogier de Baulny H, Romero NB, Rigal O, Lombès A. Progression despite replacement of a myopathic form of coenzyme Q10 defect. Neurology. 2004;63:727–9.

    PubMed  Google Scholar 

  62. Buoni S, Zannolli R, Sorrentino L, Fois A. Betamethasone and improvement of neurological symptoms in ataxia-telangiectasia. Arch Neurol. 2006;63:1479–82.

    PubMed  Google Scholar 

  63. Broccoletti T, Del Giudice E, Cirillo E, Vigliano I, Giardino G, Ginocchio VM, et al. Efficacy of very-low-dose betamethasone on neurological symptoms in ataxia-telangiectasia. Eur J Neurol. 2011;18:564–70.

    CAS  PubMed  Google Scholar 

  64. Zannolli R, Buoni S, Betti G, Salvucci S, Plebani A, Soresina A, et al. A randomized trial of oral betamethasone to reduce ataxia symptoms in ataxia telangiectasia. Mov Disord. 2012;27:1312–6.

    CAS  PubMed  Google Scholar 

  65. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9:885–94.

    CAS  PubMed  Google Scholar 

  66. Jacobi H, Bauer P, Giunti P, Labrum R, Sweeney MG, Charles P, et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology. 2011;77:1035–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Schmitz-Hubsch T, Coudert M, Bauer P, Giunti P, Globas C, Baliko L, et al. Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology. 2008;71:982–9.

    CAS  PubMed  Google Scholar 

  68. Jacobi H, Reetz K, du Montcel ST, Bauer P, Mariotti C, Nanetti L, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol. 2013;12:650–8.

    Google Scholar 

  69. Ristori G, Romano S, Visconti A, Cannoni S, Spadaro M, Frontali M, et al. Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology. 2010;74:839–45.

    CAS  PubMed  Google Scholar 

  70. Zesiewicz TA, Greenstein PE, Sullivan KL, Wecker L, Miller A, Jahan I, et al. A randomized trial of varenicline (Chantix) for the treatment of spinocerebellar ataxia type 3. Neurology. 2012;78:545–50.

    CAS  PubMed  Google Scholar 

  71. Connolly BS, Prashanth LK, Shah BB, Marras C, Lang AE. Comment on a randomized trial of varenicline (Chantix) for the treatment of spinocerebellar ataxia type 3. Neurology. 2012;79:2218.

    PubMed  Google Scholar 

  72. Filla A, Sacca F, De Michele G. Comment on a randomized trial of varenicline (Chantix) for the treatment of spinocerebellar ataxia type 3. Neurology. 2012;78:1538.

    PubMed  Google Scholar 

  73. Strupp M, Teufel J, Habs M, Feuerecker R, Muth C, van de Warrenburg BP, et al. Effects of acetyl-dl-leucine in patients with cerebellar ataxia: a case series. J Neurol. 2013; 260:2556–61.

    Google Scholar 

  74. Yabe I, Sasaki H, Yamashita I, Takei A, Tashiro K. Clinical trial of acetazolamide in SCA6, with assessment using the Ataxia Rating Scale and body stabilometry. Acta Neurol Scand. 2001;104:44–7.

    CAS  PubMed  Google Scholar 

  75. Botez MI, Botez-Marquard T, Elie R, Pedraza OL, Goyette K, Lalonde R. Amantadine hydrochloride treatment in heredodegenerative ataxias: a double blind study. J Neurol Neurosurg Psychiatry. 1996;61:259–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Velázquez-Pérez L, Rodríguez-Chanfrau J, García-Rodríguez JC, Sánchez-Cruz G, Aguilera-Rodríguez R, Rodríguez-Labrada R, et al. Oral zinc sulphate supplementation for six months in SCA2 patients: a randomized, double-blind, placebo-controlled trial. Neurochem Res. 2011;36:1793–800.

    PubMed  Google Scholar 

  77. Hering S, Achmuller C, Kohler A, Poewe W, Schneider R, Boesch SM. Phenotype variability in spinocerebellar ataxia type 2: a longitudinal family survey and a case featuring an unusual benign course of disease. Mov Disord. 2009;24:774–7.

    PubMed  Google Scholar 

  78. Watase K, Gatchel JR, Sun Y, Emamian E, Atkinson R, Richman R, et al. Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med. 2007;4:e182.

    PubMed Central  PubMed  Google Scholar 

  79. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med. 2004;10:816–20.

    CAS  PubMed  Google Scholar 

  80. Alves S, Nascimento-Ferreira I, Auregan G, Hassig R, Dufour N, Brouillet E, et al. Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado–Joseph disease. PLoS One. 2008;3:e3341.

    PubMed Central  PubMed  Google Scholar 

  81. Tsou WL, Soong BW, Paulson HL, Rodriguez-Lebron E. Splice isoform-specific suppression of the Cav2.1 variant underlying spinocerebellar ataxia type 6. Neurobiol Dis. 2011;43:533–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Ilg W, Timmann D. Gait ataxia—specific cerebellar influences and their rehabilitation. Mov Disord. 2013;28:1566–75.

    Google Scholar 

  83. Deuschl G, Toro C, Zeffiro T, Massaquoi S, Hallett M. Adaptation motor learning of arm movements in patients with cerebellar disease. J Neurol Neurosurg Psychiatry. 1996;60:515–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119:1183–98.

    PubMed  Google Scholar 

  85. Maschke M, Gomez CM, Ebner TJ, Konczak J. Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol. 2004;91:230–8.

    PubMed  Google Scholar 

  86. Smith MA, Shadmehr R. Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol. 2005;93:2809–21.

    PubMed  Google Scholar 

  87. Synofzik M, Lindner A, Thier P. The cerebellum updates predictions about the visual consequences of one’s behavior. Curr Biol. 2008;18:814–8.

    CAS  PubMed  Google Scholar 

  88. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.

    CAS  PubMed  Google Scholar 

  89. Marsden J, Harris C. Cerebellar ataxia: pathophysiology and rehabilitation. Clin Rehabil. 2011;25:195–216.

    PubMed  Google Scholar 

  90. Thach WT, Bastian AJ. Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res. 2004;143:353–66.

    PubMed  Google Scholar 

  91. Balliet R, Harbst KB, Kim D, Stewart RV. Retraining of functional gait through the reduction of upper extremity weight-bearing in chronic cerebellar ataxia. Int Rehabil Med. 1987;8:148–53.

    CAS  PubMed  Google Scholar 

  92. Gill-Body KM, Popat RA, Parker SW, Krebs DE. Rehabilitation of balance in two patients with cerebellar dysfunction. Phys Ther. 1997;77:534–52.

    CAS  PubMed  Google Scholar 

  93. Cernak K, Stevens V, Price R, Shumway-Cook A. Locomotor training using body-weight support on a treadmill in conjunction with ongoing physical therapy in a child with severe cerebellar ataxia. Phys Ther. 2008;88:88–97.

    PubMed  Google Scholar 

  94. Freund JE, Stetts DM. Use of trunk stabilization and locomotor training in an adult with cerebellar ataxia: a single system design. Physiother Theory Pract. 2010;26:447–58.

    PubMed  Google Scholar 

  95. Vaz DV, Schettino Rde C, Rolla de Castro TR, Teixeira VR, Cavalcanti Furtado SR, de Mello Figueiredo E. Treadmill training for ataxic patients: a single-subject experimental design. Clin Rehabil. 2008;22:234–41.

    PubMed  Google Scholar 

  96. Ilg W, Brötz D, Burkard S, Giese MA, Schöls L, Synofzik M. Long-term effects of coordinative training in degenerative cerebellar disease. Mov Disord. 2010;25:2239–46.

    PubMed  Google Scholar 

  97. Keith RA, Granger CV, Hamilton BB, Sherwin FS. The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil. 1987;1:6–18.

    CAS  PubMed  Google Scholar 

  98. Morton SM, Bastian AJ. Can rehabilitation help ataxia? Neurology. 2009;73:1818–9.

    PubMed  Google Scholar 

  99. Hatakenaka M, Miyai I, Mihara M, Yagura H, Hattori N. Impaired motor learning by a pursuit rotor test reduces functional outcomes during rehabilitation of poststroke ataxia. Neurorehabil Neural Repair. 2012;26:293–300.

    PubMed  Google Scholar 

  100. Bastian AJ. Mechanisms of ataxia. Phys Ther. 1997;77:672–5.

    CAS  PubMed  Google Scholar 

  101. Cassidy E, Kilbridge C, Holland A. Management of the ataxias: towards best clinical practice—physiotherapy supplement. London: Ataxia UK; 2009.

  102. Crowdy KA, Kaur-Mann D, Cooper HL, Mansfield AG, Offord JL, Marple-Horvat DE. Rehearsal by eye movement improves visuomotor performance in cerebellar patients. Exp Brain Res. 2002;146:244–7.

    CAS  PubMed  Google Scholar 

  103. Gillen G. Improving mobility and community access in an adult with ataxia. Am J Occup Ther. 2002;56:462–6.

    PubMed  Google Scholar 

  104. Harris-Love MO, Siegel KL, Paul SM, Benson K. Rehabilitation management of Friedreich ataxia: lower extremity force-control variability and gait performance. Neurorehabil Neural Repair. 2004;18:117–24.

    PubMed  Google Scholar 

  105. Battisti C, Toffola ED, Verri AP, Serra E, Dotti MT, Formichi P, et al. Clinical and stabilometric monitoring in a case of cerebellar atrophy with vitamin E deficiency. Brain Dev. 1998;20:253–7.

    CAS  PubMed  Google Scholar 

  106. Ilg W, Schatton C, Schicks J, Giese MA, Schoels L, Synofzik M. Video game-based coordinative training improves ataxia in children with degenerative ataxia. Neurology. 2012;79:2056–60.

    PubMed Central  PubMed  Google Scholar 

  107. Buonomano DV, Merzenich MM. Cortical plasticity: from synapses to maps. Annu Rev Neurosci. 1998;21:149–86. Review.

    CAS  PubMed  Google Scholar 

  108. Stinear CM, Ward NS. How useful is imaging in predicting outcomes in stroke rehabilitation? Int J Stroke. 2013;8:33–7.

    PubMed  Google Scholar 

  109. Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain. 2011;134:1264–76.

    PubMed Central  PubMed  Google Scholar 

  110. Wessel K, Zeffiro T, Lou JS, Toro C, Hallett M. Regional cerebral blood flow during a self-paced sequential finger opposition task in patients with cerebellar degeneration. Brain. 1995;118:379–93.

    PubMed  Google Scholar 

  111. Wessel K, Nitschke MF. Cerebellar somatotopic representation and cerebro-cerebellar interconnections in ataxic patients. Prog Brain Res. 1997;114:577–88.

    CAS  PubMed  Google Scholar 

  112. Kinomoto K, Takayama Y, Watanabe T, Kawasaki T, Onishi K, Yagi H, et al. The mechanisms of recovery from cerebellar infarction: an fMRI study. Neuroreport. 2003;14:1671–5.

    PubMed  Google Scholar 

  113. Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S. Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke? Neuroimage. 2007;37:1338–45.

    PubMed  Google Scholar 

  114. Burciu RG, Fritsche N, Granert O, Schmitz L, Spönemann N, Konczak J, et al. Brain changes associated with postural training in patients with cerebellar degeneration: a voxel-based morphometry study. J Neurosci. 2013;33:4594–604.

    CAS  PubMed  Google Scholar 

  115. Klintsova AY, Scamra C, Hoffman M, Napper RM, Goodlett CR, Greenough WT. Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats: II. A quantitative stereological study of synaptic plasticity in female rat cerebellum. Brain Res. 2002;937:83–93.

    CAS  PubMed  Google Scholar 

  116. Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30:36–51.

    CAS  PubMed  Google Scholar 

  117. Konczak J, Schoch B, Dimitrova A, Gizewski E, Timmann D. Functional recovery of children and adolescents after cerebellar tumour resection. Brain. 2005;128:1428–41.

    PubMed  Google Scholar 

  118. Fernández-Seara MA, Aznárez-Sanado M, Mengual E, Loayza FR, Pastor MA. Continuous performance of a novel motor sequence leads to highly correlated striatal and hippocampal perfusion increases. Neuroimage. 2009;47:1797–808.

    PubMed  Google Scholar 

  119. Siebner HR, Rothwell J. Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res. 2003;148:1–16.

    PubMed  Google Scholar 

  120. Nitsche MA, Paulus W. Transcranial direct current stimulation—update 2011. Restor Neurol Neurosci. 2011;29:463–92.

    PubMed  Google Scholar 

  121. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37:703–13.

    CAS  PubMed  Google Scholar 

  122. Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;557:689–700.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Schlerf JE, Galea JM, Bastian AJ, Celnik PA. Dynamic modulation of cerebellar excitability for abrupt, but not gradual, visuomotor adaptation. J Neurosci. 2012;32:11610–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Jayaram G, Celnik P, Bastian A. Cerebellar stimulation prolongs symmetric walking post stroke. Program No. 276.21/MM14. 2012 Neuroscience Meeting Planner. New Orleans: Society for Neuroscience, 2012. Online.

  125. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29:9115–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;3:161–9.

    CAS  PubMed  Google Scholar 

  127. Oliveri M, Koch G, Torriero S, Caltagirone C. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;376:188–93.

    CAS  PubMed  Google Scholar 

  128. Koch G, Oliveri M, Torriero S, Salerno S, Lo Gerfo E, Caltagirone C. Repetitive TMS of cerebellum interferes with millisecond time processing. Exp Brain Res. 2007;179:291–9.

    PubMed  Google Scholar 

  129. Fierro B, Giglia G, Palermo A, Pecoraro C, Scalia S, Brighina F. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability. Exp Brain Res. 2007;176:440–7.

    PubMed  Google Scholar 

  130. Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21(8):1761–70.

    PubMed Central  PubMed  Google Scholar 

  131. Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107:2950–7.

    PubMed Central  PubMed  Google Scholar 

  132. Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5:84–94.

    PubMed Central  PubMed  Google Scholar 

  133. Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, et al. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2012;26:786–99.

    PubMed  Google Scholar 

  134. Shiga Y, Tsuda T, Itoyama Y, Shimizu H, Miyazawa KI, Jin K, et al. Transcranial magnetic stimulation alleviates truncal ataxia in spinocerebellar degeneration. J Neurol Neurosurg Psychiatry. 2002;72:124–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Koch G. rTMS effects on levodopa induced dyskinesias in Parkinson’s disease patients: searching for effective cortical targets. Restor Neurol Neurosci. 2010;28:561–8.

    CAS  PubMed  Google Scholar 

  136. Popa T, Russo M, Vidailhet M, Roze E, Lehéricy S, Bonnet C, et al. Cerebellar rTMS stimulation may induce prolonged clinical benefits in essential tremor, and subjacent changes in functional connectivity: an open label trial. Brain Stimul. 2012;6:175–9.

    PubMed  Google Scholar 

  137. Flora ED, Perera CL, Cameron AL, Maddern GJ. Deep brain stimulation for essential tremor: a systematic review. Mov Disord. 2010;25:1550–9.

    PubMed  Google Scholar 

  138. Fonteyn EM, Keus SH, Verstappen CC, van de Warrenburg BP. Physiotherapy in degenerative cerebellar ataxias: utilisation, patient satisfaction, and professional expertise. Cerebellum. 2013;12:841–7.

    Google Scholar 

  139. Fonteyn EM, Keus SH, Verstappen CC, Schöls L, de Groot IJ, van de Warrenburg BP. The effectiveness of allied health care in patients with ataxia: a systematic review. J Neurol. 2013. doi:10.1007/s00415-013-6910-6

  140. Daker-White G, Greenfield J, Ealing J. “Six sessions is a drop in the ocean”: an exploratory study of neurological physiotherapy in idiopathic and inherited ataxias. Physiotherapy. 2013. doi:10.1016/j.physio.2013.02.001

  141. Vearrier LA, Langan J, Shumway-Cook A, Woollacott M. An intensive massed practice approach to retraining balance post-stroke. Gait Posture. 2005;22:154–63.

    PubMed  Google Scholar 

  142. Fryer JD, Yu P, Kang H, Mandel-Brehm C, Carter AN, Crespo-Barreto J, et al. Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua. Science. 2011;334:690–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Safdar A, Bourgeois JM, Ogborn DI, Little JP, Hettinga BP, Akhtar M, et al. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci U S A. 2011;108:4135–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Taylor JA, Klemfuss NM, Ivry RB. An explicit strategy prevails when the cerebellum fails to compute movement errors. Cerebellum. 2010;9:580–6.

    PubMed Central  PubMed  Google Scholar 

  145. Criscimagna-Hemminger SE, Bastian AJ, Shadmehr R. Size of error affects cerebellar contributions to motor learning. J Neurophysiol. 2010;103:2275–84.

    PubMed Central  PubMed  Google Scholar 

  146. Gibo TL, Criscimagna-Hemminger SE, Okamura AM, Bastian AJ. Cerebellar motor learning: are environment dynamics more important than error size? J Neurophysiol. 2013; 110:322–33.

    Google Scholar 

  147. Schlerf JE, Xu J, Klemfuss NM, Griffiths TL, Ivry RB. Individuals with cerebellar degeneration show similar adaptation deficits with large and small visuomotor errors. J Neurophysiol. 2013;109:1164–73.

    PubMed Central  PubMed  Google Scholar 

  148. Kalla R, Glasauer S, Schautzer F, Lehnen N, Büttner U, Strupp M, et al. 4-Aminopyridine improves downbeat nystagmus, smooth pursuit, and VOR gain. Neurology. 2004;62:1228–9.

    CAS  PubMed  Google Scholar 

  149. Rustin P, von Kleist-Retzow JC, Chantrel-Groussard K, Sidi D, Munnich A, Rötig A. Effect of idebenone on cardiomyopathy in Friedreich’s ataxia: a preliminary study. Lancet. 1999;354:477–9.

    CAS  PubMed  Google Scholar 

  150. Hausse AO, Aggoun Y, Bonnet D, Sidi D, Munnich A, Rötig A, et al. Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart. 2002;87:346–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Rustin P, Rötig A, Munnich A, Sidi D. Heart hypertrophy and function are improved by idebenone in Friedreich’s ataxia. Free Radic Res. 2002;36:467–9.

    CAS  PubMed  Google Scholar 

  152. Artuch R, Aracil A, Mas A, Colomé C, Rissech M, Monrós E, et al. Friedreich’s ataxia: idebenone treatment in early stage patients. Neuropediatrics. 2002;33:190–3.

    CAS  PubMed  Google Scholar 

  153. Buyse G, Mertens L, Di Salvo G, Matthijs I, Weidemann F, Eyskens B, et al. Idebenone treatment in Friedreich’s ataxia: neurological, cardiac, and biochemical monitoring. Neurology. 2003;60:1679–81.

    CAS  PubMed  Google Scholar 

  154. Ribaï P, Pousset F, Tanguy ML, Rivaud-Pechoux S, Le Ber I, Gasparini F, et al. Neurological, cardiological, and oculomotor progression in 104 patients with Friedreich ataxia during long-term follow-up. Arch Neurol. 2007;64:558–64.

    PubMed  Google Scholar 

  155. Pineda M, Arpa J, Montero R, Aracil A, Domínguez F, Galván M, et al. Idebenone treatment in paediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur J Paediatr Neurol. 2008;12:470–5.

    PubMed  Google Scholar 

  156. Lynch DR, Perlman SL, Meier T. A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch Neurol. 2010;67:941–7.

    PubMed  Google Scholar 

  157. Assadi M, Campellone JV, Janson CG, Veloski JJ, Schwartzman RJ, Leone P. Treatment of spinocerebellar ataxia with buspirone. J Neurol Sci. 2007;260:143–6.

    CAS  PubMed  Google Scholar 

  158. Schulte T, Mattern R, Berger K, Szymanski S, Klotz P, Kraus PH, et al. Double-blind crossover trial of trimethoprim-sulfamethoxazole in spinocerebellar ataxia type 3/Machado–Joseph disease. Arch Neurol. 2001;58:1451–7.

    CAS  PubMed  Google Scholar 

  159. Berg K, Wood-Dauphinee S, Williams J, Gayton D. Measuring balance in the elderly: preliminary development of an instrument. Physiother Can. 1989;41:304–11.

    Google Scholar 

  160. Kiresuk TJ, Smith A, Cardillo JEE. Goal attainment scaling: applications, theory and measurement. Hillsdale: Lawrence Erlbaum Associates; 1994.

    Google Scholar 

Download references

Conflict of Interest

None of the authors stated any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Timmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilg, W., Bastian, A.J., Boesch, S. et al. Consensus Paper: Management of Degenerative Cerebellar Disorders. Cerebellum 13, 248–268 (2014). https://doi.org/10.1007/s12311-013-0531-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0531-6

Keywords

Navigation