Skip to main content

Biomechanische Einflüsse auf die Veränderung der periprothetischen Knochendichte

  • Chapter
Fortbildung Osteologie 2

Part of the book series: Fortbildung Osteologie ((FORTOSTEO,volume 2))

  • 915 Accesses

Auszug

Die stabile knöcherne Integration von zementfrei implantierten Endoprothesen ist die Grundvoraussetzung für gute Langzeitergebnisse. Die Verankerung zementfreier Endoprothesen erfolgt entweder über eine exakte Passform zwischen Implantat und Implantatlager (form-fit) oder durch das Einbringen eines steiferenKörpers (Implantat) in einen geringfügig unterdimensionierten elastischen Körper (Knochen) (press-fit) [27]. Das Hauptproblem einer andauernden und zuverlässigen Fixation einer Endoprothese liegt dabei in der Kraftverteilung zwischen Knochen und Implantat [26]. Qualitative und quantitative Änderungen der Belastung infolge des künstlichen Gelenkersatzes haben eine Umordnung der Knochenstrukturen zur Folge. Veränderte biomechanische Bedingungen führen nach dem Transformationsgesetz [43] von Julius Wolff (1884) zu einem Knochenumbau, wonach der Knochen atrophiert in Zonen mit geringerer und hypertrophiert in Zonen mit erhöhter Zug- und Druckbelastung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adler E, Stuchin SA, Kummer FJ (1992) Stability of press-fit acetabular cups. J Arthroplasty 7:295–301

    Article  PubMed  CAS  Google Scholar 

  2. Aldinger PR, Sabo D, Pritsch M, Thomsen M, Mau H, Ewerbeck V, Breusch SJ (2003) Pattern of periprosthetic bone remodeling around stable uncemented tapered hip stems: a prospective 84-month follow-up study and a median 156-month crosssectional study with DXA. Calcif Tissue Int 73(2): 115–121

    Article  PubMed  CAS  Google Scholar 

  3. Barnett E, Nordin BE (1960) The radiological diagnosis of osteoporosis: a new approach. Clin Radiol 11:166–174

    Article  PubMed  CAS  Google Scholar 

  4. Blumentritt S (1990) Die Beziehung zwischen dem Gang des Menschen und dem Hüftgelenksaufbau in der Frontalebene. Gegenbaurs morphol Jahrb 136:677–693

    PubMed  CAS  Google Scholar 

  5. Bobyn JD, Glassman AH, Goto H, Krygier JJ, Miller JE, Brooks CE (1990) The effect of stem stiffness on femoral bone resorption after canine porous-coated total hip arthroplasty. Clin Orthop 261: 196–213

    PubMed  Google Scholar 

  6. Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop 274:79–96

    PubMed  Google Scholar 

  7. Bryan JM, Sumner DR, Hurwitz DE, Tompkins GS, Andriacchi TP, Galante JO (1996) Altered load history affects periprosthetic bone loss following cementless total hip arthroplasty. J Orthop Res 14: 762–768

    Article  PubMed  CAS  Google Scholar 

  8. Carter DR, Fyhrie DP, Whalen RT (1987) Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J Biomech. 20(8):785–794

    Article  PubMed  CAS  Google Scholar 

  9. Dalstra M, Huiskes R (1995) Load transfer across the pelvic bone. J Biomech 28(6):715–724

    Article  PubMed  CAS  Google Scholar 

  10. DeLee JG, Charnley J (1976) Radiological demarcation of cemented sockets in hip replacement. Clin Orthop Relat Res 121:20–33

    PubMed  Google Scholar 

  11. Engh CA, Bobyn JD (1988) The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop 231:7–28

    PubMed  Google Scholar 

  12. Engh CA, McGovern TF, Bobyn JD, Harris WH (1992) A quantitative evaluation of periprosthetic boneremodeling after cementless total hip arthroplasty. J Bone Joint Surg Am 74:1009–1020

    PubMed  CAS  Google Scholar 

  13. Hennigs T, Arabmotlagh M, Schwarz A, Zichner L (2002) Dose-dependent prevention of early periprosthetic bone loss by alendronate. Z Orthop Ihre Grenzgeb 140:42–47

    Article  PubMed  CAS  Google Scholar 

  14. Huiskes R, Weinans H, van Rietbergen B (1992) The Relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop 274:124–134

    PubMed  Google Scholar 

  15. Huiskes R (2000) If the bone is the answer, then what is the question? J Anat 197:145–156

    Article  PubMed  Google Scholar 

  16. Ingle BM, Hay SM, Bottjer HM, Eastell R (1999) Changes in bone mass and bone turnover following ankle fracture. Osteoporos Int 10:408–415

    Article  PubMed  CAS  Google Scholar 

  17. Jerosch J, Bader A, Uhr G (2002) Knochen — curasan Taschenatlas spezial. Thieme, Stuttgart

    Google Scholar 

  18. Kummer B (1991) Die klinische Relevanz biomechanischer Analysen der Hüftregion. Z Orthop 129:285–294

    PubMed  CAS  Google Scholar 

  19. Kummer B (1998) Grundlagen der Pauwels’ Theorie der funktionellen Anpassung des Knochens. Orthopäde 24:387–393

    Google Scholar 

  20. Layher F, Babisch J, Roth A (2007) Biomechanische Einflüsse nach Implantation einer Hüfttotalendoprothese auf die periprothetische Knochendichte an der Pfanne. Z Orthop (im Druck)

    Google Scholar 

  21. Levenston ME, Beaupre GS, Schurmann DJ, Carter DR (1993) Computer simulation of stress-related bone remodeling around noncemented acetabular components. J Arthroplasty 8(6):595–605

    Article  PubMed  CAS  Google Scholar 

  22. Lionberger D, Walker PS, Granholm J (1985) Effects of prosthetic acetabular replacement on strains in the pelvis. J Orthop Res 3:372–379

    Article  PubMed  CAS  Google Scholar 

  23. McAuley JP, Culpepper WJ, Engh CA (1998) Total hip arthroplasty. Concerns with extensively porous coated femoral components. Clin Orthop 355:182–188

    Article  PubMed  Google Scholar 

  24. McAuley JP, Moore KD, Culpepper WJ, Engh CA (1998) Total hip arthroplasty with porous-coated prostheses fixed without cement in patients who are sixty-five years of age or older. J Bone Joint Surg Am 80:1648–1655

    PubMed  CAS  Google Scholar 

  25. McAuley JP, Sychterz CJ, Engh CA Sr (2000) Influence of porous coating level on proximal femoral remodeling. Clin Orthop 37:146–153

    Google Scholar 

  26. Morscher EW (1994) Prinzipien der Pfannenfixation bei der Hüftarthroplastik mit spezieller Berücksichtigung des Press-Fit Cup. Med Orthop Tech 114:217–222

    Google Scholar 

  27. Morscher EW, Widmer KH, Bereiter H, Elke R, Schenk R (2002) Cementless socket fixation based on the „press-fit“ concept in total hip joint arthroplasty. Acta Chir Orthop Traumatol Cech 69(1):8–15

    PubMed  CAS  Google Scholar 

  28. Müller LA, Nowak TE, Völk M, Pitto RP, Pfander D, Forst R, Schmidt R, Eichinger S (2006) Analyse der periprothetischen femoralen Knochenreaktion nach zementfreier Hüftendoprothetik mittels computertomographiegestützter Osteodensitometrie in vivo: 6-Jahres-Follow-up. Biomed Tech 51:139–14

    Article  Google Scholar 

  29. Müller LA, Kress A, Nowak T, Pfander D, Pitto RP, Forst R, Schmidt R (2006) Periacetabular bone changes after uncemented total hip arthroplasty evaluated by quantitative computed tomography. Acta Orthop 77(3):380–385

    Article  Google Scholar 

  30. Pauwels F (1973) Atlas zur Biomechanik der gesunden und kranken Hüfte. Springer, Berlin

    Google Scholar 

  31. Pompe B, Antolic V, Iglic A, Kralj-Iglic V, Mavcic B, Smrke D (2000) Evaluation of biomechanical status of dysplastic human hips. Pflügers Arch 440(5 Suppl): R202–R203

    Article  PubMed  CAS  Google Scholar 

  32. Rahmy AI, Gosens T, Blake GM, Tonino A, Fogelman I (2004) Periprosthetic bone remodelling of two types of uncemented femoral implant with proximal hydroxyapatite coating: a 3-year follow-up study addressing the influence of prosthesis design and preoperative bone density on periprosthetic bone loss. Osteoporos Int 15(4):281–289

    Article  PubMed  CAS  Google Scholar 

  33. Rapperport DJ, Carter DR, Schurman DJ (1987) Contact finite element stress analysis of porous ingrowth acetabular cup implantation, ingrowth, and loosening. J Orthop Res 5:548–561

    Article  PubMed  CAS  Google Scholar 

  34. Roth A, Richartz G, Sander K, Sachse A, Fuhrmann R, Wagner A, Venbrocks RA (2005) Verlauf der periprothetischen Knochendichte nach Hüfttotalendoprothesenimplantation — Abhängigkeit von Prothesentyp und knänherner Ausgangssituation. Orthopäde 34:334–343

    Article  PubMed  CAS  Google Scholar 

  35. Roux W (1912) Anpassungslehre, Histomechanik und Histochemie. Virchows Arch 209:168

    Article  Google Scholar 

  36. Rubash HE, Sinha RK, Shanbhag AS, Kim SY (1998) Pathogenesis of bone loss after total hip arthroplasty. Orthop Clin North Am 29:173–186

    Article  PubMed  CAS  Google Scholar 

  37. Sabo D, Reiter A, Simank HG, Thomson M, Lukoschek M, Ewerbeck V (1998) Periprosthetic mineralization around cementless total hip endoprosthesis: longitudinal study and cross-sectional study on titanium threaded acetabular cup and cementless Spotorno stem with DEXA. Calcif Tissue Int 62:177–182

    Article  PubMed  CAS  Google Scholar 

  38. Schmidt R, Müller L, Kress A, Hirschfelder H, Aplas A, Pitto RP (2002) A computed tomography assessment of femoral and acetabular bone changes after total hip arthroplasty. Int Orthop (SICOT) 26:299–302

    Article  CAS  Google Scholar 

  39. Spittlehouse AJ, Smith TW, Eastell R (1998) Bone loss around 2 different types of hip prostheses. J Arthroplasty 13:422–427

    Article  PubMed  CAS  Google Scholar 

  40. Suh KT, Lee CB, Kim IJ (2001) Natural progress of a bone scan after cementless hydroxyapatite-coated total hip arthroplasty. Clin Orthop Relat Res 389: 134–142

    Article  PubMed  Google Scholar 

  41. Sychterz CJ, Topoleski LD, Sacco M, Engh CA Sr (2001) Effect of femoral stiffness on bone remodeling after uncemented arthroplasty. Clin Orthop 389:218–227

    Article  PubMed  Google Scholar 

  42. Widmer KH, Zurfluh B, Morscher EW (1997) Kontaktfläche und Druckbelastung im Implantat-Knochen-Interface bei Press-Fit-Hüftpfannen im Vergleich zum natürlichen Hüftgelenk. Orthopäde 26: 181–189

    PubMed  CAS  Google Scholar 

  43. Wolff J (1884) Das Gesetz der Transformation des Knochen. Hirschwald, Berlin

    Google Scholar 

  44. Wright JM, Pellicci PM, Salvati EA, Ghelman B, Roberts MM, Koh JL (2001) Bone density adjacent to press-fit acetabular components: a prospective analysis with quantitative computed tomography. J Bone Joint Surg (A) 83:529–536

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Steinkopff Verlag

About this chapter

Cite this chapter

Layher, F., Roth, A. (2008). Biomechanische Einflüsse auf die Veränderung der periprothetischen Knochendichte. In: Peters, K.M., König, D.P. (eds) Fortbildung Osteologie 2. Fortbildung Osteologie, vol 2. Steinkopff. https://doi.org/10.1007/978-3-7985-1825-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7985-1825-4_12

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1824-7

  • Online ISBN: 978-3-7985-1825-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics