Skip to main content

Part of the book series: Contributions to Management Science ((MANAGEMENT SC.))

Abstract

As the actual decoupling point between maritime and inland transport, seaport container terminals play an essential role in the international container transport network, which is at the same time one of the greatest drivers and one of the greatest profiteers of the globalisation. In this chapter, the basic terms, facts and problems of seaport container terminals are introduced in order to prepare the ground for all following analyses. After a brief introduction of the container logistics sector as a whole, functions, operations and equipment types of container terminals are described, which is followed by definitions of several design and performance indicators for container terminals. Finally, a comprehensive overview on all kinds of planning problems arising at seaport container terminals is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez, J. F. (2006). A heuristic for vessel planning in a reach stacker terminal. Journal of Maritime Research, 3(1), 3–16.

    Google Scholar 

  • Ambrosino, D., Sciomachen, A., & Tanfani, E. (2006). A decomposition heuristics for the container ship stowage problem. Journal of Heuristics, 12(3), 211–233.

    Article  Google Scholar 

  • Ascheuer, N., Grötschel, M., Kamin, N., & Rambau, J. (1998). Combinatorial online optimization in practice. OPTIMA, 57, 1–6.

    Google Scholar 

  • Biebig, P., Althof, W., & Wagner, N. (2008). Seeverkehrswirtschaft (4th ed.). Munich: Oldenburg Verlag.

    Google Scholar 

  • Böse, J. W. (2011). General considerations on container terminal planning. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/ computer science interfaces series (pp. 3–22). Berlin: Springer.

    Chapter  Google Scholar 

  • Böse, J. W., Reiners, T., Steenken, D., & Voß, S. (2000). Vehicle dispatching at seaport container terminals using evolutionary algorithms. In Proceedings of the 33rd Hawaii international conference on system sciences (pp. 1–10).

    Google Scholar 

  • Boysen, N., & Fliedner, M. (2010). Determining crane areas in intermodal transshipment yards: the yard partition problem. European Journal of Operational Research, 204(2), 336–342.

    Article  Google Scholar 

  • Brinkmann, B. (2011). Operations systems of container terminals: a compendious overview. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 25–39). Berlin: Springer.

    Chapter  Google Scholar 

  • Briskorn, D., Drexl, A., & Hartmann, S. (2006). Inventory-based dispatching of automated guided vehicles on container terminals. OR Spectrum, 28(4), 611–630.

    Article  Google Scholar 

  • Bruns, R., Günthner, W., Hompel, M., Kessler, F., Krause, F., Kunze, G., Marquardt, H., Poppy, W., Scholten, J., Severin, D., & Wagner, G. (2007). Fördertechnik. In K.-H. Grote & J. Feldhusen (Eds.), Dubbel (pp. U1–U113). Berlin: Springer.

    Chapter  Google Scholar 

  • Caserta, M., Schwarze, S., & Voß, S. (2011). Container rehandling at maritime container terminals. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 247–269). Berlin: Springer.

    Chapter  Google Scholar 

  • Copeland, T. E., Weston, J. F., & Shastri, K. (2003). Financial theory and corporate policy (4th ed.). Amsterdam: Addison-Wesley Longman.

    Google Scholar 

  • Cordeau, J.-F., Laporte, G., Legato, P., & Moccia, L. (2005). Models and tabu search heuristics for the berth-allocation problem. Transportation Science, 39(4), 526–538.

    Article  Google Scholar 

  • Daganzo, C. F. (1989). The crane scheduling problem. Transportation Research Part B: Methodological, 23(3), 159–175.

    Article  Google Scholar 

  • Dai, J., Lin, W., Moorthy, R., & Teo, C.-P. (2008). Berth allocation planning optimization in container terminals. In C. S. Tang, C.-P. Teo, K.-K. Wei, & F. S. Hillier (Eds.), Supply chain analysis, Vol. 119 of International series in operations research & management science (pp. 69–104). Berlin: Springer.

    Google Scholar 

  • Das, S. K., & Spasovic, L. (2003). Scheduling material handling vehicles in a container terminal. Production Planning & Control: The Management of Operations, 14(7), 623–633.

    Article  Google Scholar 

  • De Castilho, B., & Daganzo, C. F. (1993). Handling strategies for import containers at marine terminals. Transportation Research Part B: Methodological, 27(2), 151–166.

    Article  Google Scholar 

  • Dekker, R., Voogd, P., & van Asperen, E. (2006). Advanced methods for container stacking. OR Spectrum, 28(4), 563–586.

    Article  Google Scholar 

  • Duinkerken, M., Dekker, R., Kurstjens, S., Ottjes, J., & Dellaert, N. (2006). Comparing transportation systems for inter-terminal transport at the maasvlakte container terminals. OR Spectrum, 28(4), 469–493.

    Article  Google Scholar 

  • Duinkerken, M. B., & Ottjes, J. A. (2000). A simulation model for automated container terminals. In Proceedings of advanced simulation technology conference, Washington, D.C.

    Google Scholar 

  • Egbelu, P. J., & Tanchoco, J. M. A. (1984). Characterization of automated guided vehicle dispatching rules. International Journal of Production Research, 22(3), 359–374.

    Article  Google Scholar 

  • Evers, J. J. M., & Koppers, S. A. J. (1996). Automated guided vehicle traffic control at a container terminal. Transportation Research Part A: Policy and Practice, 30(1), 21–34.

    Article  Google Scholar 

  • Fiat, A., & Woeginger, A. J. (Eds.) (1998). Online algorithms: the state of the art, Vol. 1442 of Lecture notes in computer science. Berlin: Springer.

    Google Scholar 

  • Goussiatiner, A. (2009). Systematic approach to quayside container crane productivity improvement. Container Management, 2009(2, 3), 54–57, 42–45.

    Google Scholar 

  • Grötschel, M., Krumke, S. O., Rambau, J., Winter, T., & Zimmermann, U. (2001). Combinatorial online optimization in real time. In M. Grötschel, S. O. Krumke, & J. Rambau (Eds.), Online optimization of large scale systems (pp. 679–704). Berlin: Springer.

    Chapter  Google Scholar 

  • Grunow, M., Günther, H.-O., & Lehmann, M. (2004a). Dispatching multi-load agvs in highly automated seaport container terminals. OR Spectrum, 26(2), 211–235.

    Article  Google Scholar 

  • Grunow, M., Günther, H.-O., & Lehmann, M. (2004b). Online- versus Offline-Einsatzplanung von fahrerlosen Transportsystemen in Containerhäfen. In T. Sprengler, S. Voß, & H. Kopfer (Eds.), Logistikmanagement: Prozesse, Systeme, Ausbildung (pp. 399–410). Berlin: Springer.

    Google Scholar 

  • Grunow, M., Günther, H.-O., & Lehmann, M. (2006). Strategies for dispatching agvs at automated seaport container terminals. OR Spectrum, 28(4), 587–610.

    Article  Google Scholar 

  • Günther, H.-O., & Kim, K. H. (Eds.) (2005). Container terminals and automated transport systems. Berlin: Springer.

    Google Scholar 

  • Günther, H.-O., & Kim, K. H. (2006). Container terminals and terminal operations. OR Spectrum, 28(4), 437–445.

    Article  Google Scholar 

  • Hartmann, S., Pohlmann, J., & Schönknecht, A. (2011). Simulation of container ship arrivals and quay occupation. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 135–154). Berlin: Springer.

    Chapter  Google Scholar 

  • Hecht, H., & Pawlik, T. (2007). Containerseeschifffahrt. Bremen: Hanseatic Lloyd Reederei.

    Google Scholar 

  • Henesey, L., Davidsson, P., & Persson, J. A. (2004). Using simulation in evaluating berth allocation at a container terminal. http://www.ide.bth.se/~pdv/Papers/COMPIT2004.pdf, Accessed 09 September 2011.

  • Johansen, R. S. (2006). Container terminal planning: improving system productivity to service larger container vessels. Port Technology International, 31, 104–106.

    Google Scholar 

  • Kalmar (2011a). Kalmar Container Handling Systems – Complete Range of Products and Knowhow. http://www.rrtobe.com, Accessed 09 September 2011.

  • Kalmar (2011b). Straddle Carriers. http://www.kalmarind.com, Accessed 09 September 2011.

  • Kang, J., Ryu, K. R., & Kim, K. H. (2006a). Deriving stacking strategies for export containers with uncertain weight information. Journal of Intelligent Manufacturing, 17(4), 399–410.

    Article  Google Scholar 

  • Kang, J., Ryu, K. R., & Kim, K. H. (2006b). Determination of storage locations for incoming containers of uncertain weight. In M. Ali & R. Dapoigny (Eds.), Advances in applied artificial intelligence, Vol. 4031 of Lecture notes in computer science (pp. 1159–1168). Berlin: Springer.

    Chapter  Google Scholar 

  • Kim, K. H., & Park, Y.-M. (2004). A crane scheduling method for port container terminals. European Journal of Operational Research, 156(3), 752–768.

    Article  Google Scholar 

  • Kim, K. H., Park, Y. M., & Jin, M.-J. (2008). An optimal layout of container yards. OR Spectrum, 30(4), 675–695.

    Article  Google Scholar 

  • Kozan, E., & Preston, P. (1999). Genetic algorithms to schedule container transfers at multi-modal terminals. International Transactions in Operational Research, 6(3), 311–329.

    Article  Google Scholar 

  • Krieger, W. (2005a). Container. In Gabler Wirtschaftslexikon (16th ed.). (pp. 617). Wiesbaden: Gabler. Author Information in http://wirtschaftslexikon.gabler.de, Accessed 09 September 2011.

  • Krieger, W. (2005c). Logistik. In Gabler Wirtschaftslexikon (16th ed.). (pp. 1918). Wiesbaden: Gabler. Author Information in http://wirtschaftslexikon.gabler.de.

  • Lee, D.-H., Wang, H. Q., & Miao, L. (2008). Quay crane scheduling with non-interference constraints in port container terminals. Transportation Research Part E: Logistics and Transportation Review, 44(1), 124–135.

    Article  Google Scholar 

  • Meersmans, P. J. M. (2002). Optimization of container handling systems. Ph.D. Thesis, Tinbergen Institute, Rotterdam.

    Google Scholar 

  • Meersmans, P. J. M., & Dekker, R. (2001). Operations Research Supports Container Handling. Working Paper EI 2001–22, Econmetric Institute, Erasmus University Rotterdam.

    Google Scholar 

  • Meisel, F., & Bierwirth, C. (2011). A technique to determine the right crane capacity for a continuous quay. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 155–178). Berlin: Springer.

    Chapter  Google Scholar 

  • Mietschnig, W. (2005). Telelader, insbesondere Reachstacker. European Patent: EP 1 586 529 A2.

    Google Scholar 

  • Min, D., Wang, F., & Zhan, S. (2009). Impact analysis of the global financial crisis on global container fleet. In Proceedings of 6th international conference on services systems and services management (pp. 161–166). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Mizunuma, W., Tsuji, H., & Shinosaki, A. (2005). Efficient container handling by Reachstacker. Mitsubishi Heavy Industries Technical Review, 42(1), 1–2.

    Google Scholar 

  • Nazari, D. (2005). Evaluating Container Yard Layout – A Simulation Approach. Master Thesis, Erasmus University Rotterdam.

    Google Scholar 

  • Ng, W. C. (2005). Crane scheduling in container yards with inter-crane interference. European Journal of Operational Research, 164(1), 64–78.

    Article  Google Scholar 

  • Noell (2011). The Sprinter. http://www.noellmobilesystems.com/en/sprinter-carrier-range.121.html, Accessed 09 September 2011.

  • Petering, M. E. H., Wu, Y., Li, W., Goh, M., & de Souza, R. (2009). Development and simulation analysis of real-time yard crane control systems for seaport container transshipment terminals. OR Spectrum, 31(4), 801–835.

    Article  Google Scholar 

  • Pirhonen, J. (2011). Automated shuttle carrier concept. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 41–59). Berlin: Springer.

    Chapter  Google Scholar 

  • Port of Hamburg (2011b). Jahrespressekonferenz 2011. http://www.hafen-hamburg.de/news/jahrespressekonferenz-2011, Accessed 09 September 2011.

  • Ranau, M. (2011). Planning approach for dimensioning of automated traffic areas at seaport container terminals. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 179–193). Berlin: Springer.

    Chapter  Google Scholar 

  • Rijsenbrij, J. C., & Wieschemann, A. (2011). Sustainable container terminals: a design approach. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Volume 49 of Operations research/computer science interfaces series (pp. 61–82). Berlin: Springer.

    Chapter  Google Scholar 

  • Saanen, Y. A. (2004). An approach for designing robotized maritime container terminals. Ph.D. Thesis, Technical University of Delft, Rotterdam.

    Google Scholar 

  • Saanen, Y. A. (2006). High density terminals: RTG or RMG? In Proceedings of TOC Americas 2006, Acapulco (pp. 1–21).

    Google Scholar 

  • Saanen, Y. A. (2007). State-of-the-Art Technology in automation: comparing the key technologies on cost and performance. In Proceedings of TOC Europe 2007, Istanbul.

    Google Scholar 

  • Saanen, Y. A. (2008). Automated container handling. Freight international. http://www.freight-int.com/categories/automated-container-handling/automated-container-handling.asp, Accessed 09 September 2011.

  • Saanen, Y. A. (2011). Modeling techniques in planning of terminals: the quantitative approach. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 83–102). Berlin: Springer.

    Chapter  Google Scholar 

  • Scholtens, M., Wijnolst, N., & Waals, F. (1999). Malacca-max: the ultimate container carrier. Delft, NL: Delft University Press.

    Google Scholar 

  • Sciomachen, A., & Tanfani, E. (2003). The master bay plan problem: a solution method based on its connection to the three-dimensional Bin Packing Problem. IMA Journal of Management Mathematics, 14(3), 251–269.

    Article  Google Scholar 

  • Sciomachen, A., & Tanfani, E. (2007). A 3D-BPP approach for optimising stowage plans and technical productivity. European Journal of Operational Research, 183(3), 1433–1446.

    Article  Google Scholar 

  • Shields, J. J. (1984). Containership stowage: a computer aided pre-planning system. Marine Technology, 21(4), 370–383.

    Google Scholar 

  • Siepermann, M., & Krieger, W. (2005). Just in time (JIT). In Gabler Wirtschaftslexikon (16th ed.). Wiesbaden: Gabler. Author Information in http://wirtschaftslexikon.gabler.de.

  • Stahlbock, R., & Voß, S. (2008). Operations research at container terminals: a literature update. OR Spectrum, 30(1), 1–52.

    Article  Google Scholar 

  • Stahlbock, R., & Voß, S. (2010). Efficiency considerations for sequencing and scheduling of double-rail-mounted gantry cranes at maritime container terminals. International Journal of Shipping and Transport Logistics, 2(1), 95–123.

    Article  Google Scholar 

  • Steenken, D. (1992). Fahrwegoptimierung am containerterminal unter echtzeitbedingungen. OR Spectrum, 14(3), 161–168.

    Article  Google Scholar 

  • Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and operations research - a classification and literature review. OR Spectrum, 26(1), 3–49.

    Article  Google Scholar 

  • Stenzel, B. (2008). Online disjoint vehicle routing with application to AGV routing. Ph.D. Thesis, Faculty of Maths and Natural Sciences, Technical University of Berlin.

    Google Scholar 

  • UNCTAD (2008). Review of maritime transport 2008. New York: United Nations Conference on Trade and Development.

    Google Scholar 

  • Vis, I. F. A. (2006b). Survey of research in the design and control of automated guided vehicle systems. European Journal of Operational Research, 170(3), 677–709.

    Article  Google Scholar 

  • Vis, I. F. A., & de Koster, R. (2003). Transshipment of containers at a container terminal. European Journal of Operational Research, 147(1), 1–16.

    Article  Google Scholar 

  • Vis, I. F. A., de Koster, R., Roodbergen, K. J., & Peeters, L. W. P. (2001). Determination of the number of automated guided vehicles required at a semi-automated container terminal. The Journal of the Operational Research Society, 52(4), 409–417.

    Article  Google Scholar 

  • Wang, F., & Lim, A. (2007). A stochastic beam search for the berth allocation problem. Decision Support Systems, 42(4), 2186–2196.

    Article  Google Scholar 

  • Watanabe, I. (2001). Container terminal planning: a theoretical approach. Surrey, GB: World Cargo News Publishing.

    Google Scholar 

  • Wilson, I. D., & Roach, P. A. (1999). Principles of combinatorial optimization applied to container-ship stowage planning. Journal of Heuristics, 5(4), 403–418.

    Article  Google Scholar 

  • Wilson, I. D., Roach, P. A., & Ware, J. A. (2001). Container stowage pre-planning: using search to generate solutions: a case study. Knowledge-Based Systems, 14(3/4), 137–145.

    Article  Google Scholar 

  • Yang, C. H., Choi, Y. S., & Ha, T. Y. (2004). Simulation-based performance evaluation of transport vehicles at automated container terminals. OR Spectrum, 26(2), 149–170.

    Article  Google Scholar 

  • Zijderveld, E. J. A. v. (1995). A structured terminal design method, with a focus on rail terminals. Ph.D. Thesis, Faculty of Mechanical Engineering, Delft University of Technology.

    Google Scholar 

  • ZPMC (2009). Twin 40’ quayside container crane. http://www.zpmc.com, Accessed 17 February 2010.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kemme, N. (2013). Container-Terminal Logistics. In: Design and Operation of Automated Container Storage Systems. Contributions to Management Science. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2885-6_2

Download citation

Publish with us

Policies and ethics