Skip to main content

A Rayleigh-Faber-Krahn Inequality and Some Monotonicity Properties for Eigenvalue Problems with Mixed Boundary Conditions

  • Conference paper
  • First Online:
Inequalities and Applications

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 157))

Abstract

An eigenvalue problem is considered whose eigenvalues appear in the interior and on the boundary. It has been shown in [1] that there exists an infinite sequence of positive and an infinite sequence of negative eigenvalues. The lowest positive and the largest negative eigenvalue λ 1, resp. λ −1 can be characterised by means of a Rayleigh principle. It turns out that among all domains of given volume the ball has the smallest λ 1. A partial result in this direction is established for λ −1. The proof uses the isoperimetric inequality of Krahn-Bossel-Daners. Some monotonicity properties similar to those for the elastically supported membrane are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bandle, J. v. Below and W. Reichel, Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up, Rend. Lincei Mat. Appl. 17 (2006), 35–67.

    MathSciNet  MATH  Google Scholar 

  2. C. Bandle and W. Reichel, A linear parabolic problem with non-dissipative dynamical boundary conditions, Recent advances in elliptic and parabolic problems, Proceedings of the 2004 Swiss-Japanese Seminar in Zürich, World Scientific, 2006.

    Google Scholar 

  3. C. Bandle, J. v. Below and W. Reichel, Positivity and anti-maximum principles for elliptic operators with mixed boundary conditions, JEMS 10 (2007), 73–104.

    MathSciNet  MATH  Google Scholar 

  4. M. Bareket, On the domain monotonicity of the first eigenvalue of a boundary value problem, ZAMP 27 (1976), 487–491.

    MathSciNet  MATH  Google Scholar 

  5. M. Bareket, On an isoperimetric inequality for the first eigenvalue of a boundary value problem, SIAM J. Math. Anal. 8 (1977), 280–287.

    Article  MathSciNet  Google Scholar 

  6. M.-H. Bossel, Membranes ‘élastiquement’ liées: extension du théorème de Rayleigh-Faber-Krahn et de l’inégalité de Cheeger, C. R. Acad. Sci. Paris Série I Math. 302(1) (1986), 47–50.

    MathSciNet  MATH  Google Scholar 

  7. D. Daners, A Faber-Krahn inequality for Robin problems in any space dimension, Math. Ann. 335 (2006), 767–785.

    Article  MathSciNet  Google Scholar 

  8. D. Daners and J. Kennedy, Uniqueness in the Faber-Krahn inequality for Robin problems, to appear.

    Google Scholar 

  9. L. E. Payne and H. Weinberger, Lower bounds for vibration frequencies of elastically supported membranes and plates, SIAM J. Appl. Math. 5 (1957), 171–182.

    Article  MathSciNet  Google Scholar 

  10. G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, J. Rat. Mech. Anal. 3 (1954), 343–356.

    MathSciNet  MATH  Google Scholar 

  11. H. Weinberger, An isoperimetric inequality for the N-dimensional free membrane problem, J. Rat. Mech. Anal. 5 (1956), 533–536.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Bandle, C. (2008). A Rayleigh-Faber-Krahn Inequality and Some Monotonicity Properties for Eigenvalue Problems with Mixed Boundary Conditions. In: Bandle, C., Losonczi, L., Gilányi, A., Páles, Z., Plum, M. (eds) Inequalities and Applications. International Series of Numerical Mathematics, vol 157. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-8773-0_1

Download citation

Publish with us

Policies and ethics