Abstract
Bacterial toxins damage the host at the site of bacterial infection or distant from the site. Bacterial toxins can be single proteins or oligomeric protein complexes that are organized with distinct AB structure-function properties. The A domain encodes a catalytic activity. ADP ribosylation of host proteins is the earliest post-translational modification determined to be performed by bacterial toxins; other modifications include glucosylation and proteolysis. Bacterial toxins also catalyze the non-covalent modification of host protein function or can modify host cell properties through direct protein-protein interactions. The B domain includes two functional domains: a receptor-binding domain, which defines the tropism of a toxin for a cell and a translocation domain that delivers the A domain across a lipid bilayer, either on the plasma membrane or the endosome. Bacterial toxins are often characterized based upon the secretion mechanism that delivers the toxin out of the bacterium, termed types I–VII. This review summarizes the major families of bacterial toxins and also describes the specific structure-function properties of the botulinum neurotoxins.
Keywords
- Diphtheria Toxin
- Bacterial Toxin
- Bordetella Pertussis
- Botulinum Neurotoxin
- Translocation Domain
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Field M, Graf LH Jr, Laird WJ, Smith PL (1978) Heat-stable enterotoxin of Escherichia coli: In vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci USA 75: 2800–2804
Giannella RA (1981) Pathogenesis of acute bacterial diarrheal disorders. Annu Rev Med 32: 341–357
Crane JK, Wehner MS, Bolen EJ, Sando JJ, Linden J, Guerrant RL, Sears CL (1992) Regulation of intestinal guanylate cyclase by the heat-stable enterotoxin of Escherichia coli (STa) and protein kinase C. Infect Immun 60: 5004–5012
Takao T, Hitouji T, Aimoto S, Shimonishi Y, Hara S, Takeda T, Takeda Y, Miwatani T (1983) Amino acid sequence of a heat-stable enterotoxin isolated from enterotoxigentic Escherichia coli strain 18D. FEBS Lett 152: 1–5
Ozaki H, Sato T, Kubota H, Hata Y, Katsube Y, Shimonishi Y (1991) Molecular structure of the toxic domain of heat-stable enterotoxin produced by enterotoxigenic Escherichia coli. J Biol Chem 266: 5934–5941
Hidaka Y, Kubota H, Yoshimura S, Ito H, Takeda Y, Shimonishi Y (1988) Disulfide linkages in heat-stable enterotoxin (STp) produced by a porcine strain of enterotoxigenic Escherichia coli. Bull Chem Soc Jpn 61: 1265–1271
Waldman SA, O’Hanley P (1989) Influence of a glycine or proline substitution on the functional properties of a 14-amino acid analog of Escherichia coli heat-stable enterotoxin. Infect Immun 57: 2420–2424
Yamasaki S, Sato T, Hidaka Y, Ozaki H, Ito H, Hirayama T, Takeda Y, Sugimura T, Tai A, Shimonishi Y (1990) Structure-activity relationship of Escherichia coli heat-stable enterotoxin: Role of Ala residue at position 14 in toxin-receptor interaction. Bull Chem Soc Jpn 63: 2063–2070
Hasegawa M, Shimonishi Y (2005) Recognition and signal transduction mechanism of Escherichia coli heat-stable enterotoxin and its receptor, guanylate cyclase C. J Peptide Res 65: 261–271
Yoshimura S, Ikemura H, Watanabe H, Aimoto S, Shimonishi Y, Hara S, Takeda T, Miwatani T, Takeda Y (1985) Essential structure for full enterotoxigenic activity of heat-stable enterotoxin produced by enterotoxigenic Escherichia coli. FEBS Lett 181: 138–142
Ikemura H, Takagi H, Inouye M (1987) Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J Biol Chem 262: 7859–7864
Gupta DD, Saha S, Chakrabarti MK (2005) Involvement of protein kinase C in the mechanism of action of Escherichia coli heat-stable enterotoxin (STa) in a human colonic carcinoma cell line, COLO-205. Toxicol Appl Pharmol 206: 9–16
Goldstein JL, Sahi J, Bhuva M, Layden TJ, Rao MC (1994) Escherichia coli heat-stable enterotoxin-mediated colonic Cl-secretion is absent in cystic fibrosis. Gastroenterology 107: 950–956
Goncalves C, Vachon V, Schwartz JL, Dubreuil JD (2007) The Escherichia coli enterotoxin STb permeabilizes piglet jejunal brush border membrane vesicles. Infect Immun 75: 2208–2213
Handl CE, Flock JI (1992) STb producing Escherichia coli are rarely associated with infantile diarrhea. J Diarrhoeal Dis Res 10: 37–38
Arriaga YL, Harville BA, Dreyfus LA (1995) Contribution of individual disulfide bonds to biological action of Escherichia coli heat-stable enterotoxin B. Infect Immun 63: 4715–4720
Labrie V, Harel J, Dubreuil JD (2001) Oligomerization of Escherichia coli enterotoxin b through its C-terminal hydrophobic α-helix Biochim Biophys Acta 1535: 128–133
Okamoto K, Baba T, Yamanaka H, Akashi N, Fujii Y (1995) Disulfide bond formation and secretion of Escherichia coli heat-stable enterotoxin II. J Bacteriol 177: 4579–4586
Rousset E, Harel J, Dubreuil JD (1998) Sulfatide from the pig jejunum brush border epithelial cell surface is involved in binding of Escherichia coli enterotoxin b. Infect Immun 66: 5650–5658
Kennedy DJ, Greenberg RN, Dunn JA, Abernathy R, Ryerse JS, Guerrant RL (1984) Effects of Escherichia coli heat-stable enterotoxin STb on intestines of mice, rats, rabbits, and piglets. Infect Immun 46: 639–643
Dreyfus LA, Harville B, Howard DE, Shaban R, Beatty DM, Morris SJ (1993) Calcium influx mediated by the Escherichia coli heat-stable enterotoxin B (STb). Proc Natl Acad Sci USA 90: 3202–3206
Erume J, Berberov EM, Kachman SD, Scott MA, Zhou Y, Francis DH, Moxley RA (2008) Comparison of the contributions of heat-labile enterotoxin and heat-stable enterotoxin b to the virulence of enterotoxigenic Escherichia coli in F4ac receptor-positive young pigs. Infect Immun 76: 3141–3149
Lucas ML, Duncan NW, O’Reilly NF, McIlvenny TJ, Nelson YB (2008) Lack of evidence in vivo for a remote effect of Escherichia coli heat stable enterotoxin on jejunal fluid absorption. Neurogastroenterol Motil 20: 532–538
Gouaux E (1997) Channel-forming toxins: Tales of transformation. Curr Opin Struct Biol 7: 566–573
Lesieur C, Vecsey-Semien B, Abrami L, Fivaz M, van der Goot FG (1997) Membrane insertion: The strategy of toxins. Mol Membr Biol 14: 45–64
Kurisu G, Zakharov SD, Zhalnina MV, Bano S, Eroukova VY, Rokitskaya TI, Antonenko YN, Wiener MC, Cramer WA (2003) The structure of BtuB with bound colicin E3 R-domain implies a translocon. Nat Struct Biol 10: 948–954
Yamashita E, Zhalnina MV, Zakharov SD, Sharma O, Cramer WA (2008) Crystal structures of the OmpF porin: Function in a colicin translocon. EMBO J 27: 2171–2180
Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357: 216–222
Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, van der Spek JC, Murphy JR (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160: 1139–1150
Tilley SJ, Saibil HR (2006) The mechanism of pore formation by bacterial toxins. Curr Opin Struct Biol 16: 230–236
Iacovache I, Paumard P, Scheib H, Lesieur C, Sakai N, Matile S, Parker MW, van der Goot FG (2006) A rivet model for channel formation by aerolysin-like pore-forming toxins. EMBO J 25: 457–466
Nassi S, Collier RJ, Finkelstein A (2002) PA63 channel of anthrax toxin: An extended β-barrel. Biochemistry 41: 1445–1450
Moniatte M, van der Goot FG, Buckley JT, Pattus F, van Dorsselaer A (1996) Characterisation of the heptameric pore-forming complex of the Aeromonas toxin aerolysin using MALDI-TOF mass spectrometry. FEBS Lett 384: 269–272
Parker MW, Feil SC (2005) Pore-forming protein toxins: From structure to function. Prog Biophys Mol Biol 88: 91–142
Sekiya K, Satoh R, Danbara H, Futaesaku Y (1993) A ring-shaped structure with a crown formed by streptolysin O on the erythrocyte membrane. J Bacteriol 175: 5953–5961
Park JM, Ng VH, Maeda S, Rest RF, Karin M (2004) Anthrolysin O and other gram-positive cytolysins are toll-like receptor 4 agonists. J Exp Med 200: 1647–1655
Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RH, Buckle AM, Voskoboinik I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA (2008) The MACPF/CDC family of pore-forming toxins. Cell Microbiol 10: 1765–1774
Rossjohn J, Polekhina G, Feil SC, Morton CJ, Tweten RK, Parker MW (2007) Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J Mol Biol 367: 1227–1236
Tweten RK (2005) Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73: 6199–6209
Tweten RK (2005) Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73: 6199–6209
Ramachandran R, Tweten RK, Johnson AE (2005) The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation. Proc Natl Acad Sci USA 102: 7139–7144
Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RH, Buckle AM, Voskobolnlk I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA (2008) The MACPF/CDC family of pore-forming toxins. Cell Microbiol 10: 1765–1774
Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121: 247–256
Yoshino K, Abe J, Murata H, Takao T, Kohsaka T, Shimonishi Y, Takeda T (1994) Purification and characterization of a novel superantigen produced by a clinical isolate of Yersinia pseudotuberculosis. FEBS Lett 356: 141–144
McCormick JK, Yarwood JM, Schlievert PM (2001) Toxic shock syndrome and bacterial superantigens: An update. Annu Rev Microbiol 55: 77–104
Bergdoll MS (1983) Enterotoxins. In: CSF Easmon, C Adlam (eds): Staphylococci and Staphylococcal Infections. Academic Press, London, 559–598
Fraser JD, Proft T (2008) The bacterial superantigen and superantigen-like proteins. Immunol Rev 225: 226–243
Donadini R, Liew CW, Kwan AH, Mackay JP, Fields BA (2004) Crystal and solution structures of a superantigen from Yersinia pseudotuberculosis reveal a jelly-roll fold. Structure 12: 145–156
Al-Shangiti AM, Naylor CE, Nair SP, Briggs DC, Henderson B, Chain BM (2004) Structural relationships and cellular tropism of staphylococcal superantigen-like proteins. Infect Immun 72: 4261–4270
Arcus VL, Langley R, Proft T, Fraser JD, Baker EN (2002) The three-dimensional structure of a superantigen-like protein, SET3, from a pathogenicity island of the Staphylococcus aureus genome. J Biol Chem 277: 32274–32281
Chung MC, Wines BD, Baker H, Langley RJ, Baker EN, Fraser JD (2007) The crystal structure of staphylococcal superantigen-like protein 11 in complex with sialyl Lewis X reveals the mechanism for cell binding and immune inhibition. Mol Microbiol 66: 1342–1355
Langley R, Wines B, Willoughby N, Basu I, Proft T, Fraser JD (2005) The staphylococcal superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc α RI binding and serum killing of bacteria. J Immunol 174: 2926–2933
Kim J, Urban RG, Strominger JL, Wiley DC (1994) Toxic shock syndrome toxin-1 complexed with a class II major histocompatibility molecule. Science 266: 1870–1874
Gunther S, Varma AK, Moza B, Kasper KJ, Wyatt AW, Zhu P, Rahman AK, Li Y, Mariuzza RA, McCormick JK, Sundberg EJ (2007) A novel loop domain in superantigens extends their T cell receptor recognition site. J Mol Biol 371: 210–221
Li Y, Li H, Dimasi N, McCormick JK, Martin R, Schuck P, Schlievert PM, Mariuzza RA (2001) Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II. Immunity 14: 93–104
Zhao Y, Li Z, Drozd SJ, Guo Y, Mourad W, Li H (2004) Crystal structure of Mycoplasma arthritidis mitogen complexed with HLA-DR1 reveals a novel superantigen fold and a dimerized superantigen-MHC complex. Structure 12: 277–288
Sundberg EJ, Deng L, Mariuzza RA (2007) TCR recognition of peptide/MHC class II complexes and superantigens. Semin Immunol 19: 262–271
Pless DD, Ruthel G, Reinke EK, Ulrich RG, Bavari S (2005) Persistence of zinc-binding bacterial superantigens at the surface of antigen-presenting cells contributes to the extreme potency of these superantigens as T-cell activators. Infect Immun 73: 5358–5366
Sundberg EJ, Li H, Llera AS, McCormick JK, Tormo J, Schlievert PM, Karjalainen K, Mariuzza RA (2002) Structures of two streptococcal superantigens bound to TCR β chains reveal diversity in the architecture of T cell signaling complexes. Structure 10: 687–699
Sundberg EJ, Deng L, Mariuzza RA (2007) TCR recognition of peptide/MHC class II complexes and superantigens. Semin Immunol 19: 262–271
Yang X, Buonpane RA, Moza B, Rahman AK, Wang N, Schlievert PM, McCormick JK, Sundberg EJ, Kranz DM (2008) Neutralization of multiple staphylococcal superantigens by a single-chain protein consisting of affinity-matured, variable domain repeats. J Infect Dis 198: 344–348
Thomas D, Dauwalder O, Brun V, Badiou C, Ferry T, Etienne J, Vandenesch F, Lina G (2009) Staphylococcus aureus superantigens elicit redundant and extensive human Vβ patterns. Infect Immun 77: 2043–2050
Ostolaza H, Soloaga A, Goni FM (1995) The binding of divalent cations to Escherichia coli α-haemolysin. Eur J Biochem 228: 39–44
Wolff N, Ghigo JM, Delepelaire P, Wandersman C, Delepierre M (1994) C-terminal secretion signal of an Erwinia chrysanthemi protease secreted by a signal peptide-independent pathway: Proton NMR and CD conformational studies in membrane-mimetic environments. Biochemistry 33: 6792–6801
Allenby NE, O’Connor N, Pragai Z, Carter NM, Miethke M, Engelmann S, Hecker M, Wipat A, Ward AC, Harwood CR (2004) Post-transcriptional regulation of the Bacillus subtilis pst operon encoding a phosphate-specific ABC transporter. Microbiology 150: 2619–2628
Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochim Biophys Acta 1694: 149–161
Letoffe S, Delepelaire P, Wandersman C (1996) Protein secretion in gram-negative bacteria: Assembly of the three components of ABC protein-mediated exporters is ordered and promoted by substrate binding. EMBO J 15: 5804–5811
Glaser P, Danchin A, Ladant D, Barzu O, Ullmann A (1988) Bordetella pertussis adenylate cyclase: The gene and the protein. Tokai J Exp Clin Med 13 Suppl: 239–252
Guermonprez P, Khelef N, Blouin E, Rieu P, Ricciardi-Castagnoli P, Guiso N, Ladant D, Leclerc C (2001) The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the α(M)β(2) integrin (CD11b/CD18). J Exp Med 193: 1035–1044
Weingart CL, Mobberley-Schuman, PS, Hewlett, EL, Gray, MC, Weiss AA (2000) Neutralizing antibodies to andenylate cyclase toxin promote phagocytosis of Bordetella pertussis by human neutrophils. Infect Immun 68: 7152–7155
Rogel A, Hanski E (1992) Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane. J Biol Chem 267: 22599–22605
Cheung GY, Kelly SM, Jess TJ, Prior S, Price NC, Parton R, Coote JG (2009) Functional and structural studies on different forms of the adenylate cyclase toxin of Bordetella pertussis. Microb Pathog 46: 36–42
Arnoff DM, Canetti C, Serezani CH, Luo M, Peters-Golden M (2005) Cutting edge: Macrophage inhibition by cyclic AMP (cAMP): Differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J Immunol 174: 595–599
Galgani M, De Rosa V, De Simone S, Leonardi A, D’Oro U, Napolitani G, Masci AM, Zappacosta S, Racioppi L (2004) Cyclic AMP modulates the functional plasticity of immature dendritic cells by inhibiting Src-like kinases through protein kinase A-mediated signaling. J Biol Chem 279: 32507–32514
Ehrmann IE, Gray MC, Gordon VM, Gray LS, Hewlett EL (1991) Hemolytic activity of adenylate cyclase toxin from Bordetella pertussis. FEBS Lett 278: 79–83
Chenal A, Guijarro JI, Raynal B, Delepierre M, Ladant D (2009) RTX calcium binding motifs are intrinsically disordered in the absence of calcium: Implication for protein secretion. J Biol Chem 284: 1781–1789
Kamanova J, Kofronova O, Masin J, Genth H, Vojtova J, Linhartova I, Benada O, Just I, Sebo P (2008) Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J Immunol 181: 5587–5597
Watanabe M, Blobel G (1989) SecB functions as a cytosolic signal recognition factor for protein export in E. coli. Cell 58: 695–705
Johnson TL, Abendroth J, Hol WG, Sandkvist M (2006) Type II secretion: From structure to function. FEMS Microbiol Lett 255: 175–186
Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D (2004) Type V protein secretion pathway: The autotransporter story. Microbiol Mol Biol Rev 68: 692–744
Martoglio B, Dobberstein B (1998) Signal sequences: More than just greasy peptides. Trends Cell Biol 8: 410–415
Yanez ME, Korotkov KV, Abendroth J, Hol WG (2008) Structure of the minor pseudopilin EpsH from the Type 2 secretion system of Vibrio cholerae. J Mol Biol 377: 91–103
Bachert C, Zhang N, Patou J, van Zele T, Gevaert P (2008) Role of staphylococcal superantigens in upper airway disease. Curr Opin Allergy Clin Immunol 8: 34–38
Van Heyningen S (1974) Cholera toxin: Interaction of subunits with ganglioside GMI. Science 183: 656–657
Chinnapen DJ, Chinnapen H, Saslowsky D, Lencer WI (2007) Rafting with cholera toxin: Endocytosis and trafficking from plasma membrane to ER. FEMS Microbiol Lett 266: 129–137
Rodighiero C, Tsai B, Rapoport TA, Lencer WI (2002) Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep 3: 1222–1227
Moss J, Manganiello VC, Vaughan M (1976) Hydrolysis of nicotinamide adenine dinucleotide by choleragen and its A protomer: Possible role in the activation of adenylate cyclase. Proc Natl Acad Sci USA 73: 4424–4427
Gill DM (1975) Involvement of nicotinamide adenine dinucleotide in the action of cholera toxin in vitro. Proc Natl Acad Sci USA 72: 2064–2068
Cheng SH, Rich DP, Marshall J, Gregory RJ, Welsh MJ, Smith AE (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66: 1027–1036
Halm DR, Rechkemmer GR, Schoumacher RA, Frizzell RA (1988) Apical membrane chloride channels in a colonic cell line activated by secretory agonists. Am J Physiol 254: C505–511
Nystrom-Asklin J, Adamsson J, Harandi AM (2008) The adjuvant effect of CpG oligodeoxynucleotide linked to the non-toxic B subunit of cholera toxin for induction of immunity against H. pylori in mice. Scand J Immunol 67: 431–440
Plano GV, Day JB, Ferracci F (2001) Type III export: New uses for an old pathway. Mol Microbiol 40: 284–293
Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galan JE, Unger VM (2004) Structural insights into the assembly of the type III secretion needle complex. Science 306: 1040–1042
Kenjale R, Wilson J, Zenk SF, Saurya S, Picking WL, Picking WD, Blocker A (2005) The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J Biol Chem 280: 42929–42937
Veenendaal AK, Hodgkinson JL, Schwarzer L, Stabat D, Zenk SF, Blocker AJ (2007) The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol 63: 1719–1730
Picking WL, Nishioka H, Hearn PD, Baxter MA, Harrington AT, Blocker A, Picking WD (2005) IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect Immun 73: 1432–1440
Goehring UM, Schmidt G, Pederson KJ, Aktories K, Barbieri JT (1999) The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274: 36369–36372
Krall R, Sun J, Pederson KJ, Barbieri JT (2002) In vivo rho GTPase-activating protein activity of Pseudomonas aeruginosa cytotoxin ExoS. Infect Immun 70: 360–367
Wurtele M, Wolf E, Pederson KJ, Buchwald G, Ahmadian MR, Barbieri JT, Wittinghofer A (2001) How the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nat Struct Biol 8: 23–26
Ganesan AK, Vincent TS, Olson JC, Barbieri JT (1999) Pseudomonas aeruginosa exoenzyme S disrupts Ras-mediated signal transduction by inhibiting guanine nucleotide exchange factor-catalyzed nucleotide exchange. J Biol Chem 274: 21823–21829
Deng Q, Barbieri JT (2008) Modulation of host cell endocytosis by the type III cytotoxin, Pseudomonas ExoS. Traffic 9: 1948–1957
Maresso AW, Deng Q, Pereckas MS, Wakim BT, Barbieri JT (2007) Pseudomonas aeruginosa ExoS ADP-ribosyltransferase inhibits ERM phosphorylation. Cell Microbiol 9: 97–105
Fu H, Coburn J, Collier RJ (1993) The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc Natl Acad Sci USA 90: 2320–2324
Zhang Y, Barbieri JT (2005) A leucine-rich motif targets Pseudomonas aeruginosa ExoS within mammalian cells. Infect Immun 73: 7938–7945
Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS, Fujimoto J, Sawa T, Frank DW, Wiener-Kronish JP (2001) Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183: 1767–1774
Corech R, Rao A, Laxova A, Moss J, Rock MJ, Li Z, Kosorok MR, Splaingard ML, Farrell PM, Barbieri JT (2005) Early immune response to the components of the type III system of Pseudomonas aeruginosa in children with cystic fibrosis. J Clin Microbiol 43: 3956–3962
Burns DL (2003) Type IV transporters of pathogenic bacteria. Curr Opin Microbiol 6: 29–34
Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59: 451–485
Saier MH (2006) Protein secretion and membrane insertion systems in Gram-negative bacteria. J Membr Biol 214: 75–90
Planet PJ, Kachlany SC, DeSalle R, Figurski DH (2001) Phylogeny of genese for secretion NTPases: Identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci USA 98: 2503–2508
Savvides SN, Yeo HJ, Beck MR, Blaesing F, Lurz R, Lanka E, Buhrdorf R, Fischer W, Haas R, Waksman G (2003) VirB11 ATPases are dynamic hexameric assemblies: New insights into bacterial type IV secretion. EMBO J 22: 1969–1980
Fronzes R, Schafer E, Wang L, Saibil HR, Orlova EV, Waksman G (2009) Structure of a type IV secretion system core complex. Science 323: 266–268
Backert S, Meyer TF (2006) Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9: 207–217
De Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD, Shuman HA (2008) Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 4: e1000117
Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H (2008) The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10: 2416–2433
Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D (2004) Type V protein secretion pathway: The autotransporter story. Microbiol Mol Biol Rev 68: 692–744
Henderson IR, Navarro-Garcia F, Nataro JP (1998) The great escape: Structure and function of the autotransporter proteins. Trends Microbiol 6: 370–378
Loveless BJ, Saier MH (1997) A novel family of channel-forming, autotransporting, bacterial virulence factors. Mol Membr Biol 14: 801–807
Yen MR, Peabody CR, Partovi SM, Zhai Y, Tseng YH, Saier MH (2002) Protein-translocating outer membrane porins of Gram-negative bacteria. Biochim Biophys Acta 1562: 6–31
Oliver DC, Huang G, Nodel E, Pleasance S, Fernandez RC (2003) A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. Mol Microbiol 47: 1367–1383
Brunder W, Schmidt H, Karch H (1997) EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol Microbiol 24: 767–778
Leininger E, Roberts M, Kenimer JG, Charles IG, Fairweather N, Novotny P, Brennan MJ (1991) Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci USA 88: 345–349
St Geme JW, Cutter D (2000) The Haemophilus influenzae Hia adhesin is an autotransporter protein that remains uncleaved at the C terminus and fully cell associated. J. Bacteriol 182: 6005–6013
Henderson IR, Cappello R, Nataro JP (2000) Autotransporter proteins evolution and redefining protein secretion. Trends Microbiol 8: 529–532
Jacob-Dubuisson F, Locht C, Antoine R (2001) Two-partner secretion in Gram-negative bacteria: A thrifty, specific pathway for large virulence proteins. Mol Microbiol 40: 306–313
Grass S, St Geme JW (2000) Maturation and secretion of the non-typable Haemophilus influenzae HMW1 adhesin: Roles of the N-terminal and C-terminal domains. Mol Microbiol 36: 55–67
Guedin S, Willery E, Tommassen J, Fort E, Drobecq H, Locht C, Jacob-Dubuisson F (2000) Novel topological features of FhaC, the outer membrane transporter involved in the secretion of the Bordetella pertussis filamentous hemagglutinin. J Biol Chem 275: 30202–30210
Jacob-Dubuisson F, Buisine C, Willery E, Renauld-Mongenie G, Locht C (1997) Lack of functional complementation between Bordetella pertussis filamentous hemagglutinin and Proteus mirabilis HpmA hemolysin secretion machineries. J Bacteriol 179: 775–783
Klauser T, Pohlner J, Meyer TF (1993) The secretion pathway of IgA protease-type proteins in gram-negative bacteria. Bioessays 15: 799–805
Frangione B, Franklin EC (1972) Chemical typing of the immunoglobulins IgM, IgA1 and IgA2. FEBS Lett 20: 321–323
Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103: 1528–1533
Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordonez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312: 1526–1530
Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, Appelmelk BJ, Bitter W (2007) Type VII secretion-Mycobacteria show the way. Nat Rev Microbiol 5: 883–891
Schiavo G, Rossetto O, Santucci A, DasGupta BR, Montecucco C (1992) Botulinum neurotoxins are zink proteins. J Biol Chem 267: 23479–23483
Tanzi MG, Gabay MP (2002) Association between honey consumption and infant botulism. Pharmacotherapy 22: 1479–1483
Dastoor SF, Misch CE, Wang HL (2007) Botulinum toxin (Botox) to enhance facial macroesthetics: A literature review. J Oral Implantol 33: 164–171
Callaway JE (2004) Botulinum toxin type B (Myobloc): Pharmacology and biochemistry. Clin Dermatol 22: 23–28
Dressler D, Munchau A, Bhatia KP, Quinn NP, Bigalke H (2002) Antibody-induced botulinum toxin therapy failure: Can it be overcome by increased botulinum toxin doses? Eur Neurol 47: 118–121
Dressler D, Bigalke H (2002) Botulinum toxin antibody type A titres after cessation of botulinum toxin therapy. Mov Disord 17: 170–173
Suen JC, Hatheway CL, Steigerwalt AG, Brenner DJ (1988) Genetic confirmation of identities of neurotoxigenic Clostridium baratii and Clostridium butyricum implicated as agents of infant botulism. J Clin Microbiol 26: 2191–2192
Popoff MR, Marvaud JC (1999) Structural and genomic features of clostridial neurotoxins. In: JE Alouf, JH Freer (eds). The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London, 174–201
Dineen SS, Bradshaw M, Karasek CE, Johnson EA (2004) Nucleotide sequence and transcriptional analysis of the type A2 neurotoxin gene cluster in Clostridium botulinum. FEMS Microbiol Lett 235: 9–16
Oguma K, Inoue K, Fujinaga Y, Yokota K, Watanabe T, Ohyama T, Takeshi K, Inoue K (1999) Structure and function of Clostridium botulinum progenitor toxin. J Toxicol Toxin Rev 18: 17–34
Quinn CP, Minton NP (2001) Clostridial neurotoxins. In: H Bahl, P Dürre (eds): Clostridia. Biotechnology and Medical Applications. Wiley-VCH, Weinheim, 211–250
Sharma SK, Ramzan MA, Singh BR (2003) Separation of the components of type A botulinum neurotoxin complex by electrophoresis. Toxicon 41: 321–331
Rodriguez Jovita M, Collins MD, East AK (1998) Gene organization and sequence determination of the two botulinum neurotoxin gene clusters in Clostridium botulinum type A(B) strain NCTC 2916. Curr Microbiol 36: 226–231
East AK, Richardson PT, Allaway D, Collins MD, Roberts TA, Thompson DE (1992) Sequence of the gene encoding type F neurotoxin of Clostridium botulinum. FEMS Microbiol Lett 75: 225–230
Sugii S, Ohishi I, Sakaguchi G (1977) Correlation between oral toxicity and in vitro stability of Clostridium botulinum type A and B toxins of different molecular sizes. Infect Immun 16: 910–914
Bandyopadhyay S, Clark AW, DasGupta BR, Sathyamoorthy V (1987) Role of the heavy and light chains of botulinum neurotoxin in neuromuscular paralysis. J Biol Chem 262: 2660–2663
Couesnon A, Pereira Y, Popoff MR (2007) Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers. Cell Microbiol 10: 375–387
Jin Y, Takegahara Y, Sugawara Y, Matsumura T, Fujinaga Y (2009) Disruption of the epithelial barrier by botulinum haemagglutinin (HA) proteins-Differences in cell tropism and the mechanism of action between HA proteins of types A or B, and HA proteins of type C. Microbiology 155: 35–45
Maksymowych AB, Simpson LL (1998) Binding and transcytosis of botulinum neurotoxin by polarized human colon carcinoma cells. J Biol Chem 273: 21950–21957
Park JB, Simpson LL (2003) Inhalational poisoning by botulinum toxin and inhalation vaccination with its heavy-chain component. Infect Immun 71: 1147–1154
Couesnon A, Pereira Y, Popoff MR (2008) Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers. Cell Microbiol 10: 375–387
Couesnon A, Shimizu T, Popoff MR (2009) Differential entry of botulinum neurotoxin A into neuronal and intestinal cells. Cell Microbiol 11: 289–308
Kitamura M, Takamiya K, Aizawa S, Furukawa K (1999) Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice. Biochim Biophys Acta 1441: 1–3
Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312: 592–596
Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19: 5226–5237
Rummel A, Karnath T, Henke T, Bigalke H, Binz T (2004) Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 279: 30865–30870
Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA, Chapman ER (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162: 1293–1303
Tsukamoto K, Kohda T, Mukamoto M, Takeuchi K, Ihara H, Saito M, Kozaki S (2005) Binding of Clostridium botulinum type C and D neurotoxins to ganglioside and phospholipid. Novel insights into the receptor for clostridial neurotoxins. J Biol Chem 280: 35164–35171
Rummel A, Bade S, Alves J, Bigalke H, Binz T (2003) Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity. J Mol Biol 326: 835–847
Yowler BC, Schengrund CL (2004) Botulinum neurotoxin A changes conformation upon binding to ganglioside GT1b. Biochemistry 43: 9725–9731
Muraro L, Tosatto S, Motterlini L, Rossetto O, Montecucco C (2009) The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem Biophys Res Commun 380: 76–80
Jung N, Haucke V (2007) Clathrin-mediated endocytosis at synapses. Traffic 8: 1129–1136
Morgans CW, Kensel-Hammes P, Hurley JB, Burton K, Idzerda R, McKnight GS, Bajjalieh SM (2009) Loss of the synaptic vesicle protein SV2B results in reduced neurotransmission and altered synaptic vesicle protein expression in the retina. PLoS ONE 4: e5230
Baldwin MR, Barbieri JT (2009) Association of botulinum neurotoxins with synaptic vesicle protein complexes. Toxicon 54: 570–574
Fischer A, Mushrush DJ, Lacy DB, Montal M (2008) Botulinum neurotoxin devoid of receptor binding domain translocates active protease. PLoS Pathog 4
Wang J, Meng J, Lawrence GW, Zurawski TH, Sasse A, Bodeker MO, Gilmore MA, Fernandez-Salas E, Francis J, Steward LE, Aoki KR, Dolly JO (2008) Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J Biol Chem 283: 16993–17002
Fischer A, Montal M (2007) Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci USA 104: 10447–10452
Montal M (2008) Translocation of botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel. Taxicon 54: 565–569
Lacy DB, Stevens RC (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol 291: 1091–1104
Binz T, Blasi J, Yamasaki S, Baumeister A, Link E, Südhof TC, Jahn R, Niemann H (1994) Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 269: 1617–1620
Foran P, Lawrence GW, Shone CC, Foster KA, Dolly JO (1996) Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: Correlation with its blockade of catecholamine release. Biochemistry 35: 2630–2636
Schiavo G, Shone CC, Bennett MK, Scheller RH, Montecucco C (1995) Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem 270: 10566–10570
Arndt JW, Yu W, Bi F, Stevens RC (2005) Crystal structure of botulinum neurotoxin type G light chain: Serotype divergence in substrate recognition. Biochemistry 44: 9574–9580
Chen S, Hall C, Barbieri JT (2008) Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. J Biol Chem 283: 21153–21159
Ahmed SA OM, Ludivico ML, Gilsdorf J, Smith LA (2008) Identification of residues surrounding the active site of type A botulinum neurotoxin important for substrate recognition and catalytic activity. Protein J 27: 151–162
Chen S, Barbieri JT (2006) Unique substrate recognition by botulinum neurotoxins serotypes A and E. J Biol Chem 281: 10906–10911
Chen S, Kim JP, Barbieri JT (2007) Mechanism of substrate recognition by botulinum neurotoxin serotype A. J Biol Chem 282: 9621–9627
Rigoni M, Caccin P, Johnson EA, Montecucco C, Rossetto O (2001) Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A. Biochem Biophys Res Commun 288: 1231–1237
Schmidt JJ, Stafford RG (2005) Botulinum neurotoxin serotype F: Identification of substrate recognition requirements and development of inhibitors with low nanomolar affinity. Biochemistry 44: 4067–4073
Sikorra S, Henke T, Swaminathan S, Galli T, Binz T (2006) Identification of the amino acid residues rendering TI-VAMP insensitive toward botulinum neurotoxin B. J Mol Biol 357: 574–582
Arndt JW, Chai Q, Christian T, Stevens R (2006) Structure of botulinum neurotoxin type D light chain at 1.65 A resolution: Repercussions for VAMP-2 substrate specificity. Biochemistry 45: 3255–3262
Breidenbach MA, Brunger AT (2004) Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432: 925–929
Chen S, Kim JJ, Barbieri JT (2007) Mechanism of substrate recognition by botulinum neurotoxin serotype A. J Biol Chem 282: 9621–9627
Smith TJ, Lou J, Geren IN, Forsyth CM, Tsai R, LaPorte SL, Tepp WH, Bradshaw M, Johnson EA, Smith LA, Marks JD (2005) Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun 73: 5450–5457
Arndt JW, Jacobson MJ, Abola EE, Forsyth CM, Tepp WH, Marks JD, Johnson EA, Stevens RC (2006) A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1–A4. J Mol Biol 362: 733–742
Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD (2007) Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol 189: 818–832
Edmond BJ, Guerra FA, Blake J, Hempler S (1977) Case of infant botulism in Texas. Tex Med 73: 85–88
Leighton GR (1923) Report to the Scottish Board of Health H.M. Stationery Office, London
Henkel JS, Jacobson M, Tepp W, Pier C, Johnson EA, Barbieri JT (2009) Catalytic properties of botulinum neurotoxin subtypes A3 and A4 (dagger). Biochemistry 48: 2522–2528
Baldwin MR, Tepp WH, Przedpelski A, Pier CL, Bradshaw M, Johnson EA, Barbieri JT (2008) Subunit vaccine against the seven serotypes of botulism. Infect Immun 76: 1314–1318
Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359: 832–835
Schiavo G, Shone CC, Bennett MK, Scheller RH, Montecucco C (1995) Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem 270: 10566–10570
Williamson LC, Halpern JL, Montecucco C, Brown JE, Neale EA (1996) Clostridial neurotoxins and substrate proteolysis in intact neurons: Botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J Biol Chem 271: 7694–7699
Schiavo G, Rossetto O, Catsicas S, Polverino de Laureto P, DasGupta BR, Benfenati F, Montecucco C (1993) Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem 268: 23784–23787
Schiavo G, Shone CC, Rossetto O, Alexander FC, Montecucco C (1993) Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem 268: 11516–11519
Schiavo G, Malizio C, Trimble WS, Polverino de Laureto P, Milan G, Sugiyama H, Johnson EA, Montecucco C (1994) Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J Biol Chem 269: 20213–20216.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Birkhäuser Verlag/Switzerland
About this chapter
Cite this chapter
Henkel, J.S., Baldwin, M.R., Barbieri, J.T. (2010). Toxins from bacteria. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 100. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8338-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-7643-8338-1_1
Publisher Name: Birkhäuser Basel
Print ISBN: 978-3-7643-8337-4
Online ISBN: 978-3-7643-8338-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)