Skip to main content
Log in

Identification of Residues Surrounding the Active Site of Type A Botulinum Neurotoxin Important for Substrate Recognition and Catalytic Activity

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Type A botulinum neurotoxin is one of the most lethal of the seven serotypes and is increasingly used as a therapeutic agent in neuromuscular dysfunctions. Its toxic function is related to zinc-endopeptidase activity of the N-terminal light chain (LC) on synaptosome-associated protein-25 kDa (SNAP-25) of the SNARE complex. To understand the determinants of substrate specificity and assist the development of strategies for effective inhibitors, we used site-directed mutagenesis to investigate the effects of 13 polar residues of the LC on substrate binding and catalysis. Selection of the residues for mutation was based on a computational analysis of the three-dimensional structure of the LC modeled with a 17-residue substrate fragment of SNAP-25. Steady-state kinetic parameters for proteolysis of the substrate fragment were determined for a set of 16 single mutants. Of the mutated residues non-conserved among the serotypes, replacement of Arg-230 and Asp-369 by polar or apolar residues resulted in drastic lowering of the catalytic rate constant (k cat), but had less effect on substrate affinity (K m). Substitution of Arg-230 with Lys decreased the catalytic efficiency (k cat/K m) by 50-fold, whereas replacement by Leu yielded an inactive protein. Removal of the electrostatic charge at Asp-369 by mutation to Asn resulted in 140-fold decrease in k cat/K m. Replacement of other variable residues surrounding the catalytic cleft (Glu-54, Glu-63, Asn-66, Asp-130, Asn-161, Glu-163, Glu-170, Glu-256), had only marginal effect on decreasing the catalytic efficiency, but unexpectedly the substitution of Lys-165 with Leu resulted in fourfold increase in k cat/K m. For comparison purposes, two conserved residues Arg-362 and Tyr-365 were investigated with substitutions of Leu and Phe, respectively, and their catalytic efficiency decreased 140- and 10-fold, respectively, whereas substitution of the tyrosine ring with Asn abolished activity. The altered catalytic efficiencies of the mutants were not due to any significant changes in secondary or tertiary structures, or in zinc content and thermal stability. We suggest that, despite the large minimal substrate size for catalysis, only a few non-conserved residues surrounding the active site are important to render the LC competent for catalysis or provide conformational selection of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BoNT:

Botulinum neurotoxin

LC:

Light chain

SNAP-25:

Synaptosome-associated protein-25 kDa

SNARE:

SNAP receptor

WT:

Wild type

DTT:

Dithiothreitol

References

  1. Montecucco C, Schiavo G (1995) Q Rev Biophys 28:423–472

    CAS  Google Scholar 

  2. Schiavo G, Shone CC, Bennett MK, Scheller RH, Montecucco C (1995) J Biol Chem 270:10566–10570

    Article  CAS  Google Scholar 

  3. Turton K, Chaddock JA, Acharya KR (2002) Trends Biochem Sci 27:552–558

    Article  CAS  Google Scholar 

  4. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K (2001) JAMA 285:1059–1070

    Article  CAS  Google Scholar 

  5. Steinhardt RA, Bi G, Alderton JM (1994) Science 263:390–393

    Article  CAS  Google Scholar 

  6. Brin MF, Lew MF, Adler CH, Comella CL, Factor SA, Jankovic J, O’Brien C, Murray JJ, Wallace JD, Willmer-Hulme A, Koller M (1999) Neurology 53:1431–1438

    CAS  Google Scholar 

  7. Verheyden J, Blitzer A, Brin MF (2001) Semin Cutan Med Surg 20:121–126

    Article  CAS  Google Scholar 

  8. Zhou L, de Paiva A, Liu D, Aoki R, Dolly JO (1995) Biochemistry 34:15175–15181

    Article  CAS  Google Scholar 

  9. Ahmed SA, Byrne MP, Jensen M, Hines HB, Brueggemann E, Smith LA (2001) J Protein Chem 20:221–231

    Article  CAS  Google Scholar 

  10. Jensen MJ, Smith TJ, Ahmed SA, Smith LA (2003) Toxicon 41:691–701

    Article  CAS  Google Scholar 

  11. Breidenbach MA, Brunger AT (2004) Nature 432:925–929

    Article  CAS  Google Scholar 

  12. Yamasaki S, Binz T, Hayashi T, Szabo E, Yamasaki N, Eklund M, Jahn R, Niemann H (1994) Biochem Biophys Res Commun 200:829–835

    Article  CAS  Google Scholar 

  13. Rigoni M, Caccin P, Johnson EA, Montecucco C, Rossetto O (2001) Biochem Biophys Res Commun 288:1231–1237

    Article  CAS  Google Scholar 

  14. Schmidt JJ, Bostian KA (1995) J Protein Chem 14:703–708

    Article  CAS  Google Scholar 

  15. Schmidt JJ, Bostian KA (1997) J Protein Chem 16:19–26

    Article  CAS  Google Scholar 

  16. Shone CC, Quinn CP, Wait R, Hallis B, Fooks SG, Hambleton P (1993) Eur J Biochem 217:965–971

    Article  CAS  Google Scholar 

  17. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Nat Struct Biol 5:898–902

    Article  CAS  Google Scholar 

  18. Lacy DB, Stevens RC (1999) J Mol Biol 291:1091–1104

    Article  CAS  Google Scholar 

  19. Ahmed SA, Smith LA (2000) J Protein Chem 19:475–487

    Article  CAS  Google Scholar 

  20. Ahmed SA, McPhie P, Smith LA (2003) Biochemistry 42:12539–12549

    Article  CAS  Google Scholar 

  21. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  22. Schagger H, von Jagow G (1987) Anal Biochem 166:368–379

    Article  CAS  Google Scholar 

  23. Olson MA, Armendinger TL (2002) Protein Eng 15:739–743

    Article  CAS  Google Scholar 

  24. Gilson MK, Honig B (1988) Proteins 4:7–18

    Article  CAS  Google Scholar 

  25. Cornell WD, Cieplak P, Bayly CL, Gould IR, Merz KM Jr, Freguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  26. Jackson RM, Sternberg MJE (1994) Protein Eng 7:371–383

    Article  CAS  Google Scholar 

  27. Auld DS (1995) Methods Enzymol 248:228–242

    Article  CAS  Google Scholar 

  28. Kraulis PJ (1991) J Appl Cryst 24:946–950

    Article  Google Scholar 

  29. Nicholls A, Sharp KA, Honig B (1991) Proteins: Struct Funct Genet 11:281–296

    Article  CAS  Google Scholar 

  30. Swaminathan S, Eswaramoorthy S (2000) Nat Struct Biol 7:693–699

    Article  CAS  Google Scholar 

  31. Arndt JW, Chai Q, Christian T, Stevens RC (2006) Biochemistry 45:3255–3262

    Article  CAS  Google Scholar 

  32. Agarwal R, Eswaramoorthy S, Kumaran D, Binz T, Swaminathan S (2004) Biochemistry 43:6637–6644

    Article  CAS  Google Scholar 

  33. Agarwal R, Binz T, Swaminathan S (2005) Biochemistry 44:11758–11765

    Article  CAS  Google Scholar 

  34. Arndt JW, Yu W, Bi F, Stevens RC (2005) Biochemistry 44:9574–9580

    Article  CAS  Google Scholar 

  35. Binz T, Bade S, Rummel A, Kollewe A, Alves J (2002) Biochemistry 41:1717–1723

    Article  CAS  Google Scholar 

  36. Schmidt JJ, Stafford RG (2003) Appl Environ Microbiol 69:297–303

    Article  CAS  Google Scholar 

  37. Li L, Singh BR (2000) Biochemistry 39:6466–6474

    Article  CAS  Google Scholar 

  38. Chen S, Kim J-JP, Barbieri JT (2007) J Biol Chem 282:9621–9627

    Article  CAS  Google Scholar 

  39. Fu Z, Chen S, Baldwin MR, Boldt GE, Crawford A, Janda KD, Barbieri JT, Kim JJ (2006) Biochemistry 45:8903–8911

    Article  CAS  Google Scholar 

  40. Silvaggi NR, Boldt GE, Hixon MS, Kennedy JP, Tzipori S, Janda KD, Allen KN (2007) Chem Biol 14:533–542

    Article  CAS  Google Scholar 

  41. Li L, Binz T, Niemann H, Singh BR (2000) Biochemistry 39:2399–2405

    Article  CAS  Google Scholar 

  42. Miles EW, Kawasaki H, Ahmed SA, Morita H, Nagata S (1989) J Biol Chem 264:6280–6287

    CAS  Google Scholar 

Download references

Acknowledgments

The research described herein was sponsored by JSTO-CBD (RIID 3.10012_06_RD_B to SAA and RIID 02-4-34-064 to LAS). We thank Dr. Charles Millard and Dr. Lou Carlacci for helpful comments, and Dr. James J. Schmidt for critical reading of the manuscript. Disclaimer: Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ashraf Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, S.A., Olson, M.A., Ludivico, M.L. et al. Identification of Residues Surrounding the Active Site of Type A Botulinum Neurotoxin Important for Substrate Recognition and Catalytic Activity. Protein J 27, 151–162 (2008). https://doi.org/10.1007/s10930-007-9118-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-007-9118-8

Keywords

Navigation