Skip to main content

Nicotinic-antipsychotic drug interactions and cognitive function

  • Chapter
Neurotransmitter Interactions and Cognitive Function

Part of the book series: Experientia Supplementum ((EXS,volume 98))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levin ED, McClernon FJ, Rezvani AH (2006) Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification and anatomic localization. Psychopharmacology 184: 523–539

    Article  PubMed  CAS  Google Scholar 

  2. Levin ED, Rezvani AH (2000) Development of nicotinic drug therapy for cognitive disorders. Eur J Pharmacol 393: 141–146

    Article  PubMed  CAS  Google Scholar 

  3. Newhouse PA, Potter A, Levin ED (1997) Nicotinic system involvement in Alzheimer’s and Parkinson’s diseases: Implications for therapeutics. Drugs Aging 11: 206–228

    PubMed  CAS  Google Scholar 

  4. Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiat 49: 258–267

    Article  PubMed  CAS  Google Scholar 

  5. Tollefson GD (1996) Cognitive function in schizophrenic patients. J Clin Psychiat 57Suppl 11: 31–39

    Google Scholar 

  6. Geyer MA, Tamminga CA (2004) Measurement and treatment research to improve cognition in schizophrenia: neuropharmacological aspects. Psychopharmacology 174: 1–2

    Article  CAS  Google Scholar 

  7. Martin LF, Kem WR, Freedman R (2004) Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology 174: 54–64

    Article  PubMed  CAS  Google Scholar 

  8. McGehee DS, Heath MJS, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269: 1692–1696

    Article  PubMed  CAS  Google Scholar 

  9. Wonnacott S, Irons J, Rapier C, Thorne B, Lunt GG (1989) Presynaptic modulation of transmitter release by nicotinic receptors. In: Nordberg A, Fuxe K, Holmstedt B, Sundwall A (eds): Progress in Brain Research. Elsevier Science Publishers B.V., 157–163

    Google Scholar 

  10. Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW (2000) Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. Eur J Pharmacol 393: 51–58

    Article  PubMed  CAS  Google Scholar 

  11. Bartus RT, Dean RL, Flicker C (1987) Cholinergic psychopharmacology: An integration of human and animal research on memory. In: Meltzer HY (ed): Psychopharmacology: the third generation of progress. Raven Press, New York, 219–232

    Google Scholar 

  12. Brioni JD, Decker MW, Sullivan JP, Arneric SP (1997) The pharmacology of (-)-nicotine and novel cholinergic channel modulators. Adv Pharmacol 37: 153–214

    Article  PubMed  CAS  Google Scholar 

  13. Decker MW, Brioni JD, Bannon AW, Arneric SP (1995) Diversity of neuronal nicotinic acetylcholine receptors: Lessons from behavior and implications for CNS therapeutics — minireview. Life Sci 56: 545–570

    Article  PubMed  CAS  Google Scholar 

  14. Warburton DM (1992) Nicotine as a cognitive enhancer. Prog Neuro-Psychopharmacol Biol Psychiatry 16: 181–919

    Article  CAS  Google Scholar 

  15. Levin ED (1992) Nicotinic systems and cognitive function. Psychopharmacology 108: 417–431

    Article  PubMed  CAS  Google Scholar 

  16. Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology 138: 217–230

    Article  PubMed  CAS  Google Scholar 

  17. Levin ED (1997) Chronic haloperidol administration does not block acute nicotine-induced improvements in radial-arm maze performance in the rat. Pharmacol Biochem Behav 58: 899–902

    Article  PubMed  CAS  Google Scholar 

  18. Felix R, Levin ED (1997) Nicotinic antagonist administration into the ventral hippocampus and spatial working memory in rats. Neuroscience 81: 1009–1017

    Article  PubMed  CAS  Google Scholar 

  19. Levin ED, Bettegowda C, Blosser J, Gordon J (1999) AR-R17779, and alpha7 nicotinic agonist, improves learning and memory in rats. Behav Neurosci 10: 675–680

    CAS  Google Scholar 

  20. Levin ED, Christopher N (2003) Lobeline-induced learning improvements in rats in the radial-arm maze. Pharmacol Biochem Behav 76, 133–139

    Article  PubMed  CAS  Google Scholar 

  21. Levin ED, Christopher N (2002) Persistence of nicotinic agonist RJR 2403 induced working memory improvement in rats. Drug Dev Res 55: 97–103

    Article  CAS  Google Scholar 

  22. Grilly DM (2000) A verification of psychostimulant-induced improvement in sustained attention in rats: effects of d-amphetamine, nicotine, and pemoline. Exp Clin Psychopharmacol 8: 14–21

    Article  PubMed  CAS  Google Scholar 

  23. Mirza NR, Bright JL (2001) Nicotine-induced enhancements in the five-choice serial reaction time task in rats are strain-dependent. Psychopharmacology 154: 8–12

    Article  PubMed  CAS  Google Scholar 

  24. Mirza NR, Stolerman IP (1998) Nicotine enhances sustained attention in the rat under specific task conditions. Psychopharmacology 138: 266–274

    Article  PubMed  CAS  Google Scholar 

  25. Muir JL, Everitt BJ, Robbins TW (1995) Reversal of visual attentional dysfunction following lesions of the cholinergic basal forebrain by physostigmine and nicotine but not by the 5-HT3 receptor antagonist, ondansetron. Psychopharmacology 118: 82–92

    Article  PubMed  CAS  Google Scholar 

  26. Rezvani AH, Bushnell P, Levin ED (2002) Nicotine and mecamylamine effects on choice accuracy in an operant signal detection task. Psychopharmacology 164: 369–375

    Article  PubMed  CAS  Google Scholar 

  27. Rezvani AH, Levin ED (2003) Nicotine interactions with the NMDA glutaminergic antagonist dizocilpine and attentional function. Eur J Pharmacol 465: 83–90

    Article  PubMed  CAS  Google Scholar 

  28. Stolerman IP, Mirza NR, Hahn B, Shoaib M (2000) Nicotine in an animal model of attention. Eur J Pharmacol 393: 147–154

    Article  PubMed  CAS  Google Scholar 

  29. Rezvani AH, Levin ED (2003) Nicotine-alcohol interactions and attentional performance on an operant visual signal detection task in female rats. Pharmacol Biochem Behav 76: 75–83

    Article  PubMed  CAS  Google Scholar 

  30. Grottick AJ, Higgins GA (2000) Effect of subtype selective nicotinic compounds on attention as assessed by the five-choice serial reaction time task. Behav Brain Res 117: 197–208

    Article  PubMed  CAS  Google Scholar 

  31. Ruotsalainen S, Miettinen R, MacDonald E, Koivisto E, Sirvio J (2000) Blockade of muscarinic, rather than nicotinic, receptors impairs attention, but does not interact with serotonin depletion. Psychopharmacology 148: 111–123

    Article  PubMed  CAS  Google Scholar 

  32. McGaughy J, Decker MW, Sarter M (1999) Enhancement of sustained attention performance by the nicotinic acetylcholine receptor agonist ABT-418 in intact but not basal forebrain-lesioned rats. Psychopharmacology 144: 175–182

    Article  PubMed  CAS  Google Scholar 

  33. Terry AVJ, Risbrough VB, Buccafusco JJ, Menzaghi F (2002) Effects of (+/−)-4-[[2-(1-methyl-2-pyrrolidinyl)ethyl]thio]phenol hydrochloride (SIB-1553A), a selective ligand for nicotinic acetylcholine receptors, in tests of visual attention and distractibility in rats and monkeys. J Pharmacol Exp Ther 301: 284–292

    Article  PubMed  CAS  Google Scholar 

  34. Levin ED, Christopher NC, Briggs SJ, Rose JE (1993) Chronic nicotine reverses working memory deficits caused by lesions of the fimbria or medial basalocortical projection. Cognitive Brain Res 1: 137–143

    Article  CAS  Google Scholar 

  35. Rezvani AH, Caldwell D, Levin ED (2004) Nicotine-antipsychotic drug interactions and attentional performance. Eur J Pharmacol 486: 175–182

    Article  PubMed  CAS  Google Scholar 

  36. Levin ED, Simon BB, Conners CK (2000) Nicotine effects and attention deficit disorder. In: Newhouse P, Piasecki M (eds): Nicotine in psychiatry: psychopathology and emerging therapeutics. John Wiley, New York, 203–214

    Google Scholar 

  37. Mancuso G, Warburton DM, Melen M, Sherwood N, Tirelli E (1999) Selective effects of nicotine on attentional processes. Psychopharmacology 146: 199–204

    Article  PubMed  CAS  Google Scholar 

  38. Wilens TE, Biederman J, Spencer TJ, Bostic J, Prince J, Monuteaux MC, Soriano J, Fine C, Abrams A, Rater M, Polisner D (1999) A pilot controlled clinical trial of ABT-418, a cholinergic agonist, in the treatment of adults with attention deficit hyperactivity disorder. Am J Psychiat 156: 1931–1937

    PubMed  CAS  Google Scholar 

  39. Lawrence NS, Ross TJ, Stein EA (2002) Cognitive mechanisms of nicotine on visual attention. Neuron 36: 539–548

    Article  PubMed  CAS  Google Scholar 

  40. Kumari V, Gray JA, Ffyche DH, Mitterschiffthalar MT, Das M, Zachariah E, Vythelingum GN, Williams SC, Simmons A, Sharma T (2003) Cognitive effects of nicotine in humans: An fMRI study. Neuroimage 19: 1002–1013

    Article  PubMed  Google Scholar 

  41. Durany N, Zochling R, Boissl KW, Paulus W, Ransmayr G, Tatschner T, Danielczyk W, Jellinger K, Deckert J, Riederer P (2000) Human post-mortem striatal alpha4beta2 nicotinic acetylcholine receptor density in schizophrenia and Parkinson’s syndrome. Neurosci Lett 287: 109–112

    Article  PubMed  CAS  Google Scholar 

  42. Freedman R, Adams CE, Leonard S (2000) The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat 20: 299–306

    Article  PubMed  CAS  Google Scholar 

  43. Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA (1986) Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 143: 993–997

    PubMed  CAS  Google Scholar 

  44. Cornblatt BA, Keilp JG (1994) Impaired attention, genetics, and the pathophysiology of schizophrenia. Schiz Bull 20: 31–46

    CAS  Google Scholar 

  45. Meltzer HY, Thompson PA, Lee MA, Ranjan R (1996) Neuropsychologic deficits in schizophrenia: relation to social function and effect of antipsychotic drug treatment. Neuropsychopharmacology 14: 27S–33S

    Article  PubMed  CAS  Google Scholar 

  46. Stip E (1996) Memory impairment in schizophrenia: perspectives from psychopathology and pharmacotherapy. Can J Psychiatry 41: S27–34

    PubMed  CAS  Google Scholar 

  47. Alam DA, Janicak PG (2005) The role of psychopharmacotherapy in improving the long-term outcome of schizophrenia. Essential Psychopharmacol 6: 127–140

    Google Scholar 

  48. Levin ED, Wilson W, Rose JE, McEvoy J (1996) Nicotine-haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacology 15: 429–436

    Article  PubMed  CAS  Google Scholar 

  49. Mortimer AM (1997) Cognitive function in schizophrenia-do neuroleptics make a difference? Pharmacol Biochem Behav 56: 789–795

    Article  PubMed  CAS  Google Scholar 

  50. Lee MA, Jayathilake K, Meltzer HY (1999) A comparison of the effect of clozapine with typical neuroleptics on cognitive function in neuroleptic-responsive schizophrenia. Schizophr Res 37: 1–11

    Article  PubMed  CAS  Google Scholar 

  51. de Leon J, Diaz FJ (2005) A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophr Res 76: 135–157

    Article  PubMed  Google Scholar 

  52. Poirier MF, Canceil O, Bayle F, Millet B, Bourdel MC, Moatti C, Olie JP, Attar-Levy D (2002) Prevalence of smoking in psychiatric patients. Prog Neuro-Psychopharmacol Biol Psychiat 26: 529–537

    Article  Google Scholar 

  53. Strand JE, Nyback H (2005) Tobacco use in schizophrenia: a study of cotinine concentrations in the saliva of patients and controls. Eur Psychiat 20: 50–54

    Article  Google Scholar 

  54. Aguilar MC, Gurpegui M, Diaz F, de Leon J (2005) Nicotine dependence and symptoms in schizophrenia: naturalistic study of complex interactions. Br J Psychiatry 186: 215–221

    Article  PubMed  Google Scholar 

  55. George TP, Vessicchio JC, Termine A, Sahady DM, Head CA, Pepper WT, Kosten TR, Wexler BE (2002) Effects of smoking abstinence on visuospatial working memory function in schizophrenia. Neuropsychopharmacology 26: 75–85

    Article  PubMed  Google Scholar 

  56. Weiser M, Reichenberg A, Grotto I, Yasvitzky R, Rabinowitz J, Lubin G, Nahon D, Knobler HY, Davidson M (2004) Higher rates of cigarette smoking in male adolescents before the onset of schizophrenia: a historical-prospective cohort study. Am J Psychiat 161: 1219–1223

    Article  PubMed  Google Scholar 

  57. Kumari V, Postma P (2005) Nicotine use in schizophrenia: The self medication hypotheses. Neurosci Biobehav Rev 29: 1021–1034

    Article  PubMed  CAS  Google Scholar 

  58. Dalack GW, Healy DJ, Meador-Woodruff JH (1998) Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. Am J Psychiat 155: 1490–1501

    PubMed  CAS  Google Scholar 

  59. Kosten TR, Ziedonis DM (1997) Substance abuse and schizophrenia: editors’ introduction [see comments]. Schizophr Bull 23: 181–186

    PubMed  CAS  Google Scholar 

  60. Stassen HH, Bridler R, Hagele S, Hergersberg M, Mehmann B, Schinzel A, Weisbrod M, Scharfetter C (2000) Schizophrenia and smoking: Evidence for a common neurobiological basis? Am J Med Genet 96: 173–177

    Article  PubMed  CAS  Google Scholar 

  61. Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38: 22–33

    Article  PubMed  CAS  Google Scholar 

  62. Guan ZZ, Zhang X, Blennow K, Nordberg A (1999) Decreased protein level of nicotinic receptor alpha 7 subunit in the frontal cortex from schizophrenic brain. Neuroreport 10: 1779–1782

    PubMed  CAS  Google Scholar 

  63. Adler LE, Olincy A, Waldo M, Harris JG, Griffith J, Stevens K, Flach K, Nagamoto H, Bickford P, Leonard S, Freedman R (1998) Schizophrenia, sensory gating, and nicotinic receptors. Schizophrenia Bull 24: 189–202

    CAS  Google Scholar 

  64. Leonard S, Breese C, Adams C, Benhammou K, Gault J, Stevens K, Lee M, Adler L, Olincy A, Ross R, Freedman R (2000) Smoking and schizophrenia: abnormal nicotinic receptor expression. Eur J Pharmacol 393: 237–242

    Article  PubMed  CAS  Google Scholar 

  65. Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, Marks JM, Rose GM (1996) Genetic correlation of inhibitory gating of hippocampal auditory evoked response and alpha-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology 15: 152–162

    Article  PubMed  CAS  Google Scholar 

  66. Addington J (1998) Group treatment for smoking cessation among persons with schizophrenia. Psychiatr Serv 49: 925–928

    PubMed  CAS  Google Scholar 

  67. Adler LE, Hoffer LD, Wiser A, Freedman R (1993) Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 150: 1856–1861

    PubMed  CAS  Google Scholar 

  68. Olincy A, Johnson LL, Ross RG (2003) Differential effects of cigarette smoking on performance of a smooth pursuit and a saccadic eye movement task in schizophrenia. Psychiat Res 117: 223–236

    Article  Google Scholar 

  69. Bettany JH, Levin ED (2001) Ventral hippocampal alpha7 nicotinic receptors and chronic nicotine effects on memory. Pharmacol Biochem Behav 70: 467–474

    Article  PubMed  CAS  Google Scholar 

  70. Levin ED, Addy N, Arthur D, Wagner Y, Stamm K (2001) Acute and chronic a7 and a4b2 hippocampal nicotinic receptor blockade and memory function in rats. Society for Research on Nicotine and Tobacco, Meeting March 23–25, Seattle, WA, USA

    Google Scholar 

  71. Levin ED, Bancroft A, Bettany J (2001) Chronic systemic nicotine interaction with a7 and a4b2 hippocampal nicotinic receptors. Society for Research on Nicotine and Tobacco, Meeting March 23–25, Seattle, WA, USA

    Google Scholar 

  72. Levin ED, Bradley A, Addy N, Sigurani N (2002) Hippocampal alpha 7 and alpha 4 beta 2 nicotinic receptors and working memory. Neuroscience 109: 757–765

    Article  PubMed  CAS  Google Scholar 

  73. McQuiston AR, Madison DV (1999) Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. J Neurosci 19: 2887–2896

    PubMed  CAS  Google Scholar 

  74. Drew AE, Derbez AE, Werling LL (2000) Nicotinic receptor-mediated regulation of dopamine transporter activity in rat prefrontal cortex. Synapse 38: 10–16

    Article  PubMed  CAS  Google Scholar 

  75. Bancroft A, Levin ED (2000) Ventral hippocampal alpha4beta2 nicotinic receptors and chronic nicotine effects on memory. Neuropharmacology 39: 2770–2778

    Article  PubMed  CAS  Google Scholar 

  76. Singh A, Potter A, Newhouse P (2004) Nicotinic acetylcholine receptor system and neuropsychiatric disorders. Idrugs 7: 1096–1103

    PubMed  CAS  Google Scholar 

  77. Sacco KA, Bannon KL, George TP (2004) Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric disorders. Journal of Psychopharmacology 18: 457–474

    Article  PubMed  CAS  Google Scholar 

  78. Ripoll N, Bronnec M, Bourin M (2004) Nicotinic receptors and schizophrenia. Curr Med Res Opin 20: 1057–1074

    Article  PubMed  CAS  Google Scholar 

  79. Newhouse P, Singh A, Potter A (2004) Nicotine and nicotinic receptor involvement in neuropsychiatric disorders. Curr Topics in Medicinal Chem 4: 267–282

    Article  CAS  Google Scholar 

  80. Hogg RC, Bertrand D (2004) Nicotinic acetylcholine receptors as drug targets. Curr Drug Targets — CNS & Neurological Disorders 3: 123–130

    Article  CAS  Google Scholar 

  81. Newhouse PA, Potter A, Singh A (2004) Effects of nicotinic stimulation on cognitive performance. Curr Opinion in Pharmacol 4: 36–46

    Article  CAS  Google Scholar 

  82. Harris J, Kongs S, Allensworth D, Martin L, Tregallas J, Sullivan B, Zerbe G, Freedman R (2004) Effects of nicotine on cognitive deficits in schizophrenia. Neuropsychopharmacology 29: 1378–1385

    Article  PubMed  CAS  Google Scholar 

  83. Sacco KA, Termine A, Seyal A, Dudas MM, Vessicchio JC, Krishnan-Sarin S, Jatlow PI, Wexler BE, George TP (2005) Effects of cigarette smoking on spatial working memory and attentional deficits in schizophrenia: Involvement of nicotinic receptor mechanisms. Arch Gen Psychiatry 62: 649–659

    Article  PubMed  Google Scholar 

  84. Tregellas JR, Tanabe JL, Martin LF, Freedman R (2005) FMRI of response to nicotine during a smooth pursuit eye movement task in schizophrenia. Am J Psychiatry 162: 391–393

    Article  PubMed  Google Scholar 

  85. Avila MT, Sherr JD, Hong E, Myers CS, Thaker GK (2003) Effects of nicotine on leading saccades during smooth pursuit eye movements in smokers and nonsmokers with schizophrenia. Neuropsychopharmacology 28: 2184–2191

    PubMed  CAS  Google Scholar 

  86. Larrison-Faucher AL, Matorin AA, Sereno AB (2004) Nicotine reduces antisaccade errors in task impaired schizophrenic subjects. Prog Neuropsychopharmacol Biol Psychiatry 28: 505–516

    Article  PubMed  CAS  Google Scholar 

  87. Sherr JD, Myers C, Avila MT, Elliott A, Blaxton TA, Thaker GK (2002) The effects of nicotine on specific eye tracking measures in schizophrenia. Biol Psychiatry 52: 721–728

    Article  PubMed  CAS  Google Scholar 

  88. Jacobsen LK, D’Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH (2004) Nicotine effects on brain function and functional connectivity in schizophrenia. Biol Psychiatry 55: 850–858

    Article  PubMed  CAS  Google Scholar 

  89. Green A, Ellis KA, Ellis J, Bartholomeusz CF, Ilic S, Croft RJ, Phan KL, Nathan PJ (2005) Muscarinic and nicotinic receptor modulation of object and spatial N-back working memory in humans. Pharmacol Biochem Behav 81: 575–584

    Article  PubMed  CAS  Google Scholar 

  90. Inami R, Kirino E, Inoue R, Arai H (2005) Transdermal nicotine administration enhances automatic auditory processing reflected by mismatch negativity. Pharmacol Biochem Behav 80: 453–461

    Article  PubMed  CAS  Google Scholar 

  91. Myers CS, Robles O, Kakoyannis AN, Sherr JD, Avila MT, Blaxton TA, Thaker GK (2004) Nicotine improves delayed recognition in schizophrenic patients. Psychopharmacology 174: 334–340

    Article  PubMed  CAS  Google Scholar 

  92. Smith RC, Singh A, Infante M, Khandat A, Kloos A (2002) Effects of cigarette smoking and nicotine nasal spray on psychiatric symptoms and cognition in schizophrenia. Neuropsychopharmacology 27: 479–497

    Article  PubMed  CAS  Google Scholar 

  93. DeLuca V, Wong AH, Muller DJ, Wong GW, Tyndale RF, Kennedy JL (2004) Evidence of association between smoking and alpha7 nicotinic receptor subunit gene in schizophrenia patients. Neuropsychopharmacology 29: 1522–1526

    Article  CAS  Google Scholar 

  94. De Luca V, Wang H, Squassina A, Wong GW, Yeomans J, Kennedy JL (2004) Linkage of M5 muscarinic and alpha7-nicotinic receptor genes on 15q13 to schizophrenia. Neuropsychobiology 50: 124–127

    Article  PubMed  CAS  Google Scholar 

  95. Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M, Drebing C, Berger R, Venn D, Sirota P et al. (2002) Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry 59: 1085–1096

    Article  PubMed  CAS  Google Scholar 

  96. Gault J, Hopkins J, Berger R, Drebing C, Logel J, Walton C, Short M, Vianzon R, Olincy A, Ross RG, Adler LE, Freedman R, Leonard S (2003) Comparison of polymorphisms in the alpha7 nicotinic receptor gene and its partial duplication in schizophrenic and control subjects. Am J Med Genet Part B, Neuropsychiatric Genetics 123: 39–49

    Article  Google Scholar 

  97. Freedman R, Olincy A, Ross RG, Waldo MC, Stevens KE, Adler LE, Leonard S (2003) The genetics of sensory gating deficits in schizophrenia. Current Psychiatry Reports 5: 155–161

    PubMed  Google Scholar 

  98. Deutsch SI, Rosse RB, Schwartz BL, Weizman A, Chilton M, Arnold DS, Mastropaolo J (2005) Therapeutic implications of a selective alpha7 nicotinic receptor abnormality in schizophrenia. Israel J Psychiat Related Sci 42: 33–44

    Google Scholar 

  99. Tatsumi R, Fujio M, Satoh H, Katayama J, Takanashi S, Hashimoto K, Tanaka H (2005) Discovery of the alpha7 nicotinic acetylcholine receptor agonists. (R)-3′-(5-Chlorothiophen-2-yl)spiro-1-azabicyclo[2.2.2]octane-3,5′-[1′,3′]oxazolidin-2′-one as a novel, potent, selective, and orally bioavailable ligand. J Med Chem 48: 2678–2686

    Article  PubMed  CAS  Google Scholar 

  100. Koike K, Hashimoto K, Takai N, Shimizu E, Komatsu N, Watanabe H, Nakazato M, Okamura N, Stevens KE, Freedman R, Iyo M (2005) Tropisetron improves deficits in auditory P50 suppression in schizophrenia. Schizophr Res 76: 67–72

    Article  PubMed  Google Scholar 

  101. Hajos M, Hurst RS, Hoffmann WE, Krause M, Wall TM, Higdon NR, Groppi VE (2005) The selective alpha7 nicotinic acetylcholine receptor agonist PNU-282987 [N-[(3R)-1-Azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride] enhances GABAergic synaptic activity in brain slices and restores auditory gating deficits in anesthetized rats. J Pharmacol Exp Ther 312: 1213–1222

    Article  PubMed  CAS  Google Scholar 

  102. Mastropaolo J, Rosse RB, Deutsch SI (2004) Anabasine, a selective nicotinic acetylcholine receptor agonist, antagonizes MK-801-elicited mouse popping behavior, an animal model of schizophrenia. Behav Brain Res 153: 419–422

    Article  PubMed  CAS  Google Scholar 

  103. O’Neill HC, Rieger K, Kem WR, Stevens KE (2003) DMXB, an alpha7 nicotinic agonist, normalizes auditory gating in isolation-reared rats. Psychopharmacology 169: 332–339

    Article  PubMed  CAS  Google Scholar 

  104. Cilia J, Cluderay JE, Robbins MJ, Reavill C, Southam E, Kew JN, Jones DN (2005) Reversal of isolation-rearing-induced PPI deficits by an alpha7 nicotinic receptor agonist. Psychopharmacology 182: 214–219

    Article  PubMed  CAS  Google Scholar 

  105. Goldberg TE, Weinberger DR (1996) Effects of neuroleptic medications on the cognition of patients with schizophrenia: a review of recent studies. J Clin Psychiatry 57Suppl 9: 62–65

    PubMed  CAS  Google Scholar 

  106. McGurk SR (1999) The effects of clozapine on cognitive functioning in schizophrenia. J Clin Psychiatry 60Suppl 12: 24–29

    PubMed  CAS  Google Scholar 

  107. Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25: 233–255

    PubMed  CAS  Google Scholar 

  108. Goldberg TE, Weinberger DR (1994) The effects of clozapine on neurocognition: an overview. J Clin Psychiatry 55Suppl B: 88–90

    PubMed  Google Scholar 

  109. Hoff AL, Faustman WO, Wieneke M, Espinoza S, Costa M, Wolkowitz O, Csernansky JG (1996) The effects of clozapine on symptom reduction, neurocognitive function, and clinical management in treatment-refractory state hospital schizophrenic inpatients. Neuropsychopharmacology 15: 361–369

    Article  PubMed  CAS  Google Scholar 

  110. Perez-Gomez M, Junque C (1999) Clozapina: estudios neuropsicologicos y de resonancia magnetica. Actas Esp Psiquiatr 27: 341–346

    PubMed  CAS  Google Scholar 

  111. Hagger C, Buckley P, Kenny JT, Friedman L, Ubogy D, Meltzer HY (1993) Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Psychiat 34: 702–712

    Article  PubMed  CAS  Google Scholar 

  112. Murphy BL, Roth RH, Arnsten AF (1997) Clozapine reverses the spatial working memory deficits induced by FG7142 in monkeys. Neuropsychopharmacology 16: 433–437

    Article  PubMed  CAS  Google Scholar 

  113. Didriksen M (1995) Effects of antipsychotics on cognitive behaviour in rats using the delayed non-match to position paradigm. Eur J Pharmacol 281: 241–250

    Article  PubMed  CAS  Google Scholar 

  114. Skarsfeldt T (1996) Differential effect of antipsychotics on place navigation of rats in the Morris water maze. A comparative study between novel and reference antipsychotics. Psychopharmacology 124: 126–133

    Article  PubMed  CAS  Google Scholar 

  115. Simosky JK, Stevens KE, Adler LE, Freedman R (2003) Clozapine improves deficient inhibitory auditory processing in DBA/2 mice, via a nicotinic cholinergic mechanism. Psychopharmacology 165: 386–396

    PubMed  CAS  Google Scholar 

  116. Neil W, Curran S, Wattis J (2003) Antipsychotic prescribing in older people [see comment]. Age & Ageing 32: 475–483

    Article  Google Scholar 

  117. Hellstrom-Lindahl E, Court J (2000) Nicotinic acetylcholine receptors during prenatal development and brain pathology in human aging. Behav Brain Res 113: 159–168

    Article  PubMed  CAS  Google Scholar 

  118. Levin ED, Galen DM, Ellison GD (1987) Chronic haloperidol effects on oral movements and radial-arm maze performance in rats. Pharmacol Biochem Behav 26: 1–6

    Article  PubMed  CAS  Google Scholar 

  119. Ellison GD, Johansson P, Levin ED, See RE, Gunne L (1988) Chronic neuroleptics alter the effects of the D1 agonist SK&F 38393 and the D2 agonist LY 171555 on oral movements in rats. Psychopharmacology 96: 253–257

    Article  PubMed  CAS  Google Scholar 

  120. McGurk S, Levin ED, Butcher LL (1988) Cholinergic-dopaminergic interactions in radial-arm maze performance. Behav Neural Biol 49: 234–239

    Article  PubMed  CAS  Google Scholar 

  121. Levin ED, Petro A, Beatty A (2005) Olanzapine interactions with nicotine and mecamylamine in rats: effects on memory. Neurotoxicol Teratol 27: 459–464

    Article  PubMed  CAS  Google Scholar 

  122. Addy N, Levin ED (2002) Nicotine interactions with haloperidol, clozapine and risperidone and working memory function in rats. Neuropsychopharmacology 27: 534–541

    Article  PubMed  CAS  Google Scholar 

  123. Zhang W, Bymaster FP (1999) The in vivo effects of olanzapine and other antipsychotic agents on receptor occupancy and antagonism of dopamine D1, D2, D3, 5HT2A and muscarinic receptors. Psychopharmacology 141: 267–278

    Article  PubMed  CAS  Google Scholar 

  124. Green MF, Marshall BD, Jr., Wirshing WC, Ames D, Marder SR, McGurk S, Kern R S, Mintz J (1997) Does risperidone improve verbal working memory in treatment-resistant schizophrenia? Am J Psychiat 154: 799–804

    PubMed  CAS  Google Scholar 

  125. Sharma T, Mockler D (1998) The cognitive efficacy of atypical antipsychotics in schizophrenia. J Clin Psychopharmacol 18: 12S–19S

    Article  PubMed  CAS  Google Scholar 

  126. Weinberger DR, Gallhofer B (1997) Cognitive function in schizophrenia. Int Clin Psychopharmacol 12Suppl 4: S29–36

    PubMed  Google Scholar 

  127. de Haan L, Booij J, Lavalaye J, van Amelsvoort T, Linszen D (2006) Occupancy of dopamine D2 receptors by antipsychotic drugs is related to nicotine addiction in young patients with schizophrenia. Psychopharmacology 183: 500–505

    Article  PubMed  CAS  Google Scholar 

  128. Drew AE, Werling LL (2003) Nicotinic receptor-mediated regulation of the dopamine transporter in rat prefrontocortical slices following chronic in vivo administration of nicotine. Schizophr Res 65: 47–55

    Article  PubMed  Google Scholar 

  129. Lambe EK, Picciotto MR, Aghajanian GK (2003) Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology 28: 216–225

    Article  PubMed  CAS  Google Scholar 

  130. Silvestri S, Negrete JC, Seeman MV, Shammi CM, Seeman P (2004) Does nicotine affect D2 receptor upregulation? A case-control study. Acta Psychiatrica Scandinavica 109: 313–317; discussion 317–318

    Article  PubMed  CAS  Google Scholar 

  131. Schwieler L, Engberg G, Erhardt S (2004) Clozapine modulates midbrain dopamine neuron firing via interaction with the NMDA receptor complex. Synapse 52: 114–122

    Article  PubMed  CAS  Google Scholar 

  132. Schwieler L, Erhardt S (2003) Inhibitory action of clozapine on rat ventral tegmental area dopamine neurons following increased levels of endogenous kynurenic acid. Neuropsychopharmacology 28: 1770–1777

    Article  PubMed  CAS  Google Scholar 

  133. Levin ED, Gunne LM (1989) Chronic neuroleptic effects on spatial reversal learning in monkeys. Psychopharmacology 97: 496–500

    Article  PubMed  CAS  Google Scholar 

  134. Rezvani AH, Caldwell D, Levin ED (2006) Chronic nicotine interactions with clozapine and risperidone and attentional function in rats. Prog Neuropsychopharmacol Biol Psychiatry 30: 190–197

    Article  PubMed  CAS  Google Scholar 

  135. Wilkerson A, Levin ED (1999) Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats. Neuroscience 89: 743–749

    Article  PubMed  CAS  Google Scholar 

  136. McEvoy J, Freudenreich O, McGee M, Vanderzwaag C, Levin ED, Rose J (1995) Clozapine decreases smoking in patients with chronic schizophrenia. Biol Psychiat 37: 550–552

    Article  PubMed  CAS  Google Scholar 

  137. Levin ED, Icenogle L, Farzad A (2005) Ketanserin attenuates nicotine-induced working memory improvement in rats. Pharmacol Biochem Behav 82: 289–292

    Article  PubMed  CAS  Google Scholar 

  138. Rezvani AH, Caldwell DP, Levin ED (2005) Nicotine-serotonergic drug interactions and attentional performance in rats. Psychopharmacology 179: 521–528

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Levin, E.D., Rezvani, A.H. (2006). Nicotinic-antipsychotic drug interactions and cognitive function. In: Levin, E.D. (eds) Neurotransmitter Interactions and Cognitive Function. Experientia Supplementum, vol 98. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7772-4_10

Download citation

Publish with us

Policies and ethics