Skip to main content

Advertisement

Log in

DMXB, an α7 nicotinic agonist, normalizes auditory gating in isolation-reared rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Impaired auditory gating is common in schizophrenic patients. Evidence suggests that this deficit is related to a reduced number of α7 nicotinic receptors and therefore treatment with α7 nicotinic agonists may improve this condition. 3-(2,4)-Dimethoxybenzylidine anabaseine (DMXB; also known as GTS-21) is such an agonist and has shown efficacy in mice both orally and intraperitoneally.

Objective

Rats reared in social isolation post weaning have demonstrated a deficit in auditory gating similar to that seen in schizophrenia patients. The current study determined the effects of DMXB on auditory gating in awake, freely moving rats, comparing a group born and raised in-house and reared in isolation post-weaning (isolation reared) with a group shipped from the supplier as adults and housed in groups prior to surgery (controls).

Methods

Ten unmedicated, baseline recordings were obtained following surgical implantation of a recording electrode. All control group rats and the isolation-reared rats that showed deficient gating at baseline were treated with 1.0, 3.33, 10 or 33 mg/kg DMXB, IP, to determine the drug's impact on auditory gating.

Results

Isolation-reared rats had significantly improved auditory gating at the 3.33, 10 and 33 mg/kg doses, while control rats had a significant impairment in their auditory gating at the 33 mg/kg dose.

Conclusions

DMXB improved the auditory gating deficit seen in isolation-reared rats. As previously observed in another model, the change was produced through a decrease in the test amplitude in isolation-reared animals. Control animals had a significant reduction in conditioning amplitude at the high dose, which produced the loss of auditory gating. The results in the isolation-reared rats are in concert with previous studies which found similar improvement in auditory gating following administration of DMXB to DBA mice, the only differences being in the duration of the effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Adams CE, Stevens KE, Kem WR, Freedman R (2000) Inhibition of nitric oxide synthase prevents α7 nicotinic receptor-mediated restoration of inhibitory auditory gating in rat hippocampus. Brain Res 877:235–244

    Article  CAS  PubMed  Google Scholar 

  • Adler LE, Pachtman E, Franks R, Pecevich M, Waldo M, Freedman R (1982) Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry 17:639–654

    CAS  PubMed  Google Scholar 

  • Adler LE, Rose G, Freedman R (1986) Neurophysiological studies of sensory gating in rats: effects of amphetamine, phencyclidine and haloperidol. Biol Psychiatry 21:787–798

    CAS  PubMed  Google Scholar 

  • Adler LE, Pang K, Gerhardt G, Rose GM (1988) Modulation of gating of auditory evoked potentials by norepinephrine: Pharmacological evidence obtained using selective neurotoxin. Biol Psychiatry 24:179–190

    Google Scholar 

  • Adler LE, Hoffer LJ, Griffith J, Waldo MC, Freedman R (1992) Normalization of deficient auditory sensory gating in relatives of schizophrenics by nicotine. Biol Psychiatry 32:607–616

    CAS  PubMed  Google Scholar 

  • Adler LE, Hoffer LJ, Wiser A, Freedman R (1993) Transient normalization of a defect in auditory sensory processing in schizophrenics following cigarette smoking. Am J Psychiatry 150:1856–1861

    CAS  PubMed  Google Scholar 

  • Arendash GW, Senstock GJ, Sanberg PR, Kem WR (1995) Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 674:252–259

    Article  CAS  PubMed  Google Scholar 

  • Baker N, Adler LE, Franks RD, Waldo M, Berry S, Nagamoto H, Muckle A, Freedman R (1987) Neurophysiological assessment of gating of sensory input: comparison between schizophrenia and other diagnoses. Biol Psychiatry 22:603–617

    CAS  PubMed  Google Scholar 

  • Bickford PC, Wear KD (1995) Restoration of sensory gating of auditory evoked response by nicotine in fimbria-fornix lesioned rats. Brain Res 705:235–240

    Article  CAS  PubMed  Google Scholar 

  • Bickford-Wimer PC, Nagamoto H, Johnson R, Adler LE, Egan M, Rose GM, Freedman R (1990) Auditory sensory gating in hippocampal neurons: a model system in the rat. Biol Psychiatry 27:183–192

    CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Arch Gen Psychiatry 47:181–188

    CAS  PubMed  Google Scholar 

  • Coates RM, Kem WR, Abbott BC (1971) Isolation and structure of a hoplonemertine toxin. Toxicon 9:15–22

    Article  CAS  PubMed  Google Scholar 

  • Couturier S, Bertrand D, Matter JM, Hernandez MC, Bertrand S, Miller N, Valera S, Barkas T, Ballivet M (1990) A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-bungarotoxin. Neuron 5:847–856

    PubMed  Google Scholar 

  • deFiebre CM, Meyer EM, Henry JC, Muraskin SI, Kem WR, Papke RL (1995) Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at the neuronal nicotinic α7/125I-α-bungarotoxin receptor subtypes. Mol Pharmacol 47:164–171

    PubMed  Google Scholar 

  • Erhardt S, Schwieler L, Engberg G (2002) Excitatory and inhibitory responses of dopamine neurons in the ventral tegmental area to nicotine. Synapse 43:227–237

    Google Scholar 

  • Freedman R, Adler LE, Bickford PC, Waldo MC, Pachtman E, Franks RD (1983) Neurophysiological evidence for a defect in inhibitory pathways in schizophrenia: comparison of medicated and drug free patients. Biol Psychiatry 18:537–551

    CAS  PubMed  Google Scholar 

  • Fu Y, Matta SG, Sharp BM (1999) Local alpha-bungarotoxin-sensitive nicotinic receptors modulate hippocampal norepinephrine release by systemic nicotine. J Pharmacol Exp Ther 289:133–139

    CAS  PubMed  Google Scholar 

  • Gentsch C, Lichtsteiner M, Feer H (1981) Individual housing of rats causes divergent changes in spontaneous and reactive activity. Experientia 37:61–62

    Google Scholar 

  • Gentsch C, Lichtsteiner M, Kraeuchi K, Feer H (1982) Different reaction patterns in individually and socially-reared rats during exposures to novel environments. Behav Brain Res 4:45–54

    CAS  PubMed  Google Scholar 

  • Geyer MA, Wilkinson LS, Humby T, Robbins TW (1993) Isolation rearing of rats produces a deficit in prepulse inhibition of acoustic startle similar to that in schizophrenia. Biol Psychiatry 34:361–372

    CAS  PubMed  Google Scholar 

  • Gilad GM, Mahon BD, Finkelstein Y, Koffler B, Gilad VH (1985) Stress-induced activation of the hippocampal cholinergic system and the pituitary-adrenocortical axis. Brain Res 347:404–408

    CAS  PubMed  Google Scholar 

  • Grady S, Marks MJ, Wonnacott S, Collins AC (1992) Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum. J Neurochem 59:848–856

    CAS  PubMed  Google Scholar 

  • Grady S, Marks MJ, Collins AC (1994) Desensitization of nicotine-stimulated [3H]dopamine release from mouse striatal synaptosomes. J Neurochem 62:1390–1398

    CAS  PubMed  Google Scholar 

  • Griffith JM, Freedman R (1995) Normalization of the auditory P50 gating deficit of schizophrenic patients after non-REM but not REM sleep. Psychiatry Res 56:271–278

    Article  CAS  PubMed  Google Scholar 

  • Jones GH, Marsden CA, Robbins TW (1990) Increased sensitivity to amphetamine and reward related stimuli following isolation-rearing in rats: possible disruption of dopamine-dependent mechanisms of the nucleus accumbens. Psychopharmacology 102:364–372

    CAS  PubMed  Google Scholar 

  • Jones GH, Marsden CA, Robbins TW (1991) Behavioral rigidity and rule-learning following social isolation in rats: Neurochemical correlates. Behav Brain Res 43:35–50

    CAS  PubMed  Google Scholar 

  • Jones GH, Hernandez TD, Kendall DA, Marsden CA, Robbins TW (1992) Dopaminergic and serotonergic function following isolation rearing in rats: a study of behavioral responses and postmortem and in vivo neurochemistry. Pharmacol Biochem Behav 43:17–35

    CAS  PubMed  Google Scholar 

  • Kem WR (1971) A study of the occurrence of anabaseine in Paranemertes and other nemertines. Toxicon 9: 23–32

    Article  CAS  PubMed  Google Scholar 

  • Kem WR (1997) Alzheimer's drug design based upon an invertebrate toxin (anabaseine), which is a potent nicotinic receptor agonist. Invert Neurosci 3:251–259

    CAS  PubMed  Google Scholar 

  • Kem WR, Mahnir VM, Papke RL, Lingle CJ (1997) Anabaseine is a potent agonist on muscle and neuronal α-bungarotoxin-sensitive nicotinic receptors. J Pharmacol Exp Ther 283:979–992

    CAS  PubMed  Google Scholar 

  • Luntz-Leybman V, Bickford PC, Freedman R (1992) Cholinergic gating of response to auditory stimuli in rat hippocampus. Brain Res 587:130–136

    CAS  PubMed  Google Scholar 

  • Mahnir V, Lin B, Prokai-Tatrai K, Kem WR (1998) Pharmacokinetics and urinary excretion of DMXBA (GTS-21), a compound enhancing cognition. Biopharm Drug Dispos 19:147–151

    Article  CAS  PubMed  Google Scholar 

  • Meyer WM, de Fiebre CM, Hunter BE, Simpkins CE, Frauworth N, de Fiebre NE (1994) Effects of anabaseine-related analogs on rat brain nicotinic receptor binding and on avoidance behaviors. Drug Dev Res 31:127–134

    CAS  Google Scholar 

  • Morgan MJ, Einon D, Morris RGM (1977) Inhibition and isolation rearing in the rat: extinction and satiation. Physiol Behav 18:1–5

    CAS  PubMed  Google Scholar 

  • Nanri M, Kasahara N, Yamamoto J, Miyake H, Watanabe H (1998) A comparative study on the effects of nicotine and GTS-21, a new nicotinic agonist, on the locomotor activity and brain monoamine level. Jpn J Pharmacol 78:385–389

    Article  CAS  PubMed  Google Scholar 

  • Papke RL, de Fiebre CM, Kem WR, Meyer EM (1994) The subunit specific effects of novel anabaseine-derived nicotinic agents. In: Giacobini E, Becker R (eds) Alzheimer disease: therapeutic strategies. Birkhauser, Boston, pp 206–211

  • Pauly JR, Collins AC (1993) An autoradiographic analysis of alterations in nicotinic cholinergic receptors following 1 week of corticosterone supplementation. Neuroendocrinolology 57:262–274

    CAS  Google Scholar 

  • Pauly JR, Ullman EA, Collins AC (1988) Adrenocortical hormone regulation of nicotine sensitivity in mice. Physiol Behav 44:109-116

    CAS  PubMed  Google Scholar 

  • Pauly JR, Grun EU, Collins AC (1990) Chronic corticosterone administration modulates nicotine sensitivity and brain nicotinic receptor binding in C3H mice. Psychopharmacology 101:310-316

    CAS  PubMed  Google Scholar 

  • Rollins YS, Stevens KE, Harris KR, Hall ME, Rose GM, Leonard S (1993) Reduction in auditory gating following intracerebroventricular application of α7 antisense oligonucleotides. Soc Neurosci Abstr 19:837

    Google Scholar 

  • Sahakian BJ, Robbins TW (1977) Isolation rearing enhances tail-pinch induced oral behavior in the rat. Physiol Behav 18:53–58

    CAS  PubMed  Google Scholar 

  • Simosky JK, Stevens KE, Kem WR, Freedman R (2001) Intragastric DMXB-A, an α7 nicotinic agonist, improves deficient sensory inhibition in DBA/2 mice. Biol Psychiatry 50:493–500

    Article  CAS  PubMed  Google Scholar 

  • Smith JK, Neill JC, Costall B (1997) Post-weaning housing conditions influence the behavioural effects of cocaine and d-amphetamine. Psychopharmacology 131:23–33

    CAS  PubMed  Google Scholar 

  • Stevens KE, Bullock AE, Collins AC (2001) Chronic corticosterone treatment alters sensory gating in C3H mice. Pharmacol Biochem Behav 69:359–366

    Article  CAS  PubMed  Google Scholar 

  • Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, Marks M J, Rose GM (1996) Genetic correlation of hippocampal auditory evoked response and α-bungarotoxin binding in inbred mouse strains. Neuropsychopharmacology 15:152–162

    Google Scholar 

  • Stevens KE, Fuller LL, Rose GM (1991) Dopaminergic and noradrenergic modulation of amphetamine-induced changes in auditory gating potentials. Brain Res 555:91–98

    CAS  PubMed  Google Scholar 

  • Stevens KE, Meltzer J, Rose GM (1993) Disruption of sensory gating by the α2 selective noradrenergic antagonist yohimbine. Biol Psychiatry 33:130–132

    CAS  PubMed  Google Scholar 

  • Stevens KE, Meltzer J, Rose GM (1995) Nicotinic cholinergic normalization of amphetamine-induced loss of auditory gating in freely moving rats. Psychopharmacology 119:163–170

    CAS  PubMed  Google Scholar 

  • Stevens KE, Johnson RG, Rose GM (1997) Rats reared in social isolation show schizophrenia-like changes in auditory gating. Pharmacol Biochem Behav 58:1031–1036

    Article  CAS  PubMed  Google Scholar 

  • Stevens KE, Kem WR, Mahnir VM, Freedman R (1998) Selective α7 nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology 136:320–327

    Article  CAS  PubMed  Google Scholar 

  • Stevens KE, Wear KD (1997) Normalizing effects of nicotine and a novel nicotinic agonist on hippocampal auditory gating in two animal models. Pharmacol Biochem Behav 57:869–874

    CAS  PubMed  Google Scholar 

  • van Haaren F, Anderson KG, Haworth SC, Kem WR (1999) GTS-21, a mixed nicotinic receptor agonist/antagonist, does not affect the nicotine cue. Pharmacol Biochem Behav 64:439–444

    Article  PubMed  Google Scholar 

  • Venables P (1964) Input dysfunction in schizophrenia. In: Maher B (ed) Progress in experimental personality research. Academic Press, Orlando, pp 1–47

  • Venables P (1992) Hippocampal function and schizophrenia: experimental psychological evidence. Ann NY Acad Sci 658:111–127

    CAS  PubMed  Google Scholar 

  • Wheeler JW, Olubajo O, Storm CB, Duffield RM (1981) Anabaseine: venom alkaloid of Aphaenogaster ants. Science 211:1051–1052

    CAS  Google Scholar 

  • Wilkinson LS, Killcross SS, Humby T, Hall FS, Geyer MA, Robbins TW(1994) Isolation in the rat produces developmentally specific deficits in prepulse inhibition of the acoustic startle response without disrupting latent inhibition. Neuropsychopharmacology 10:61–72

    Google Scholar 

  • Wilson CL, Babb TL, Halgren E, Wang ML, Crandall PH (1984) Habituation of human limbic neuronal response to sensory stimulation. Exp Neurol 84:74–79

    CAS  PubMed  Google Scholar 

  • Woodruff-Pak DS, Yong-Tong L, Kem WR (1994) A nicotinic agonist (GTS-21), eyeblink classical conditioning and nicotinic receptor binding in rabbit brain. Brain Res 645:309–317

    CAS  PubMed  Google Scholar 

  • Zhou FM, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nature Neurosci 4:1224–1229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a VA Merit Award (K.E.S.), and an NIMH USPHS Grant MH58680 (K.E.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen E. Stevens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Neill, H.C., Rieger, K., Kem, W.R. et al. DMXB, an α7 nicotinic agonist, normalizes auditory gating in isolation-reared rats. Psychopharmacology 169, 332–339 (2003). https://doi.org/10.1007/s00213-003-1482-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1482-2

Keywords

Navigation