Skip to main content

A Contribution to Creep Fracture under Combined Stress System

  • Conference paper
Thermoinelasticity

Part of the book series: IUTAM Symposia ((IUTAM))

  • 165 Accesses

Summary

An analytical investigation was conducted on the creep fracture of thin-walled cylinders subjected to combined tension and internal pressure, and the results were analyzed on the basis of the large strain theory. The experimental results on a 0.14% carbon steel at the test temperature of 500 °C proved the validity of the large strain theory combined with the von Mises criterion, and the time to rupture estimated by the large strain theory was in good agreement with the experimental results.

On the other hand, in the case of a material with less ductility, the large strain theory is not further applicable to its creep fracture. For instance, an 18-8 Nb austenitic stainless steel tested at 650 °C exhibited grain-boundary cracks, which were distributed uniformly on the surface of the specimen and were progressing perpendicular to the axis of the maximum tensile stress. The results imply that the criterion for creep fracture is closely related to the crack initiation and propagation.

Experimental study on creep fracture of cylinders under internal pressure were also conducted. The results were used to discuss on the criterion of the fracture. It was concluded that the mean diameter formula is valid for the design formula of pressure vessels and tubes irrespective of materials, wall-thickness and working conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finnie, I., and W. R. Heller: Creep of Engineering Materials. New York: McGraw-Hill. 1959.

    Google Scholar 

  2. Johnson, A. E.: Metallurgical Rev. 5, 447 (1960).

    Google Scholar 

  3. Odqvist, F. K. G., and J. Hult: Creep Strength of Metallic Materials. Berlin- Göttingen-Heidelberg: Springer. 1961. In German.

    Google Scholar 

  4. Odqvist, F. K. G.: Mathematical Theory of Creep and Creep Rupture. London: Oxford University Press. 1966.

    Google Scholar 

  5. Siegfried, W.: J. Appl. Mech. 10, 202 (1943).

    Google Scholar 

  6. Johnson, A. E., and N. E. Frost: Engineer. 191, 434 (1951).

    Google Scholar 

  7. Johnson, A. E., J. Henderson, and V. D. Mathur: ibid. 202, 261, 299 (1956).

    Google Scholar 

  8. Hoff, N. J.: J. Appl. Mech. 20, No. 1, 105 (1953).

    Google Scholar 

  9. Taira, S., R. Ohtani, and A. Ishisaka: Proc. 11th Japan Congr. on Material Research, Soc. Mat. Sci., Kyoto, 76 (1968).

    Google Scholar 

  10. Taira, S., R. Koterazawa, and R. Ohtani: Proc. 8th Japan Congr. on Testing Materials, Soc. Mat. Sci., Kyoto, 53 (1965).

    Google Scholar 

  11. Rimrott, F. P. J.: Trans. ASME, Ser. E, 81, 271 (1959).

    Google Scholar 

  12. Rimrott, F. P. J., F. J. Mills, and J. Marin: ibid. 82, 303 (1960).

    Google Scholar 

  13. Rimrott, F. P. J., and J. R. Luke: ZAMM 41, 485 (1961).

    Article  MATH  Google Scholar 

  14. Rimrott, F. P. J.: Ing.-Arch. 27, 169 (1959).

    Article  Google Scholar 

  15. Lode, W.: Forsch. Gebiete Ingenieurw. 808 (1928).

    Google Scholar 

  16. Lode, W.: Z. Physik 86, 913 (1926).

    Article  ADS  Google Scholar 

  17. Taira, S., and R. Ohtani: Bulletin of JSME 11, No. 46, 593 (1968).

    Google Scholar 

  18. Buxton, W. J., and W. R. Burrows: Trans. ASME 78, 575 (1951).

    Google Scholar 

  19. Burrows, W. R., R. Michel, and A. W. Rankin: ibid. 76, 427 (1954).

    Google Scholar 

  20. Voorhees, H. R., C. M. Sliepcevich, and J. W. Freeman: Ind. Engng. Chem. 48, 872 (1956).

    Article  Google Scholar 

  21. Davis, E. A.: Trans. ASME, Ser. D, 82, No. 2, 453 (1960).

    Google Scholar 

  22. Tucker, T. J., Jr., E. E. Coulter, and L. F. Kooistra: ibid., 465.

    Google Scholar 

  23. Ohnami, M., and Y. Awaya: Proc. 6th Japan Congr. on Testing Materials, 61 (1962).

    Google Scholar 

  24. Ikejima, T., et al.: J. J. pan Soc. Mech. Test. 11, No. 102, 165 (1962).

    Google Scholar 

  25. Rowe, G. H., J. R. Stewart, and K. N. Burgess: Trans. ASME, Ser. D, 85, No. 1, 71 (1963).

    Google Scholar 

  26. Shinoda, N., et al.: J. J. pan Soc. Mech. Test. 14, No. 137, 78 (1965).

    Google Scholar 

  27. Taira, S., and R. Ohtani: J. J. pan Soc. Mech. Engr. 70, No. 587 1737 (1967).

    Google Scholar 

  28. Carlson, W. B., and D. Duval: Engineering 198, 829 (1962).

    Google Scholar 

  29. Chitty, A., and D. Duval: Joint Int. Conf. on Creep, New York, No. 4–1 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag/Wien

About this paper

Cite this paper

Taira, S., Ohtani, R. (1970). A Contribution to Creep Fracture under Combined Stress System. In: Boley, B.A. (eds) Thermoinelasticity. IUTAM Symposia. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8244-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8244-4_18

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8246-8

  • Online ISBN: 978-3-7091-8244-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics