Skip to main content

The role of glutamate in dementia

  • Conference paper
Ageing and Dementia

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 53))

Summary

Glutamate is an excitatory neurotransmitter, but may also act as an endogenous neurotoxin. There is good evidence for an involvement of the glutamatergic system in the pathophysiology of dementia. The glutamatergic transmission machinery is quite complex and provides a gallery of possible drug targets. There are good arguments both for an agonist and an antagonist strategy. When following the antagonist strategy, the goal is to provide neuroprotective effects via glutamate receptor antagonisms without inhibiting the physiological transmission that is required for learning and memory formation. When following the agonist strategy, the goal is to activate glutamatergic transmission without neurotoxic side effects. Several available antidementia drugs may modulate the glutamatergic transmission.

The pathogenesis of the most frequent type of dementia, i.e. Alzheimer’s disease, is poorly understood. Currently, there is an enormous need for an effective pharmacotherapy that either slows the rate of progression or produces clinically significant improvement in symptoms. This short overview describes the role of the excitatory neurotransmitter glutamate in Alzheimer’s disease. Glutamate is the transmitter used, e.g., in corticocortical association neurons and in intrahippocampal fibers. Glutamatergic mechanisms are involved in fast synaptic transmission as well as in learning and memory processes. But, under certain conditions, glutamate may become a neurotoxin leading to slowly progressive as well as acute neuronal cell loss. These properties of the glutamatergic system led to the hypothesis that there might be a glutamatergic strategy for the treatment of Alzheimer’s disease and also other dementia syndromes (Greenamyre et al., 1985; Greenamyre et al., 1988; Lawlor and Davis, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes CA, Danysz W, Parsons CG (1996) Effects of the uncompetitive NMDA receptor antagonist memantine on hippocampal long-term potentiation, short-term exploratory modulation and spatial memory in awake, freely moving rats. Eur J Neurosci 8: 565–571

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31: 119–130

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1994) Excitoxicity. In: Meldrum BS (ed) Excitatory amino acid antagonists. Blackwell Scientific Publications, Oxford, pp 216–236

    Google Scholar 

  • Danysz W, Archer T (1994) Glutamate, learning and dementia — selection of evidence. Amino Acids 7: 147–163

    Article  CAS  Google Scholar 

  • Danysz W, Parsons CG, Kornhuber J, Schmidt WJ, Quack G (1997) Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents — preclinical studies. Neurosci Biobehav Rev 21: 455–468

    Article  PubMed  CAS  Google Scholar 

  • De Boni U, McLachlan DRC (1985) Controlled induction of paired helical filaments of the Alzheimer type in cultured human neurons, by glutamate and aspartate. J Neurol Sci 68: 105–118

    Article  PubMed  Google Scholar 

  • Dysken MW, Mendels J, LeWitt P, Reisberg B, Pomara N, Wood J, Skare S, Fakouhi JD, Herting RL (1992) Milacemide: a placebo-controlled study in senile dementia of the Alzheimer type. J Am Geriatr Soc 40: 503–506

    PubMed  CAS  Google Scholar 

  • Edwards FA (1995) LTP — a structural model to explain the inconsistencies. Trends Neurosci 18: 250–255

    Article  PubMed  CAS  Google Scholar 

  • Esclaire F, Lesort M, Blanchard C, Hugon J (1997) Glutamate toxicity enhances tau gene expression in neuronal cultures. J Neurosci Res 49: 309–318

    Article  PubMed  CAS  Google Scholar 

  • Frankiewicz T, Potier B, Bashir ZI, Collingridge GL, Parsons CG (1996) Effects of memantine and MK-801 on NMDA-induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampus slices. Br J Pharmacol 117: 689–697

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Haverkamp LJ, Li J, Karshin W, Yu J, Tom D, Li X, Kirkpatrick JB (1995) Senile plaques stimulate microglia to release a neurotoxin found in Alzheimer brain. Neurochem Int 27: 119–137

    Article  PubMed  CAS  Google Scholar 

  • Görtelmeyer R, Erbler H (1992) Memantine in the treatment of mild to moderate dementia syndrome. A double-blind placebo-controlled study. Arzneimittelforschung/Drug Res 42: 904–913

    Google Scholar 

  • Greenamyre JT, Penney JB, Young AB, D’Amato CJ, Hicks SP, Shoulson I (1985) Alterations in glutamate binding in Alzheimer’s and Huntington’s disease. Science 227: 1496–1499

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, Maragos WF, Albin RL, Penney JB, Young AB (1988) Glutamate transmission and toxicity in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 12: 421–430

    Article  PubMed  CAS  Google Scholar 

  • Groh D, Rodewald S, Rammsayer T (1996) Experimentelle Studie zum Einfluss des NMDA-Rezeptorenantagonisten Memantine auf Lern-und Gedächtnisfunktionen bei gesunden Probanden. Fortschr Neurol Psychiatrie 64: 144

    Google Scholar 

  • Gsell W, Strein I, Riederer P (1996) The neurochemistry of Alzheimer type, vascular type and mixed type dementias compared. J Neural Transm [Suppl] 47: 73–101

    Article  CAS  Google Scholar 

  • Handelmann GE, Nevins ME, Mueller LL, Arnolde SM, Cordi AA (1989) Milacemide, a glycine prodrug, enhances performance of learning tasks in normal and amnestic rodents. Biochem Pharmacol Behav 34: 823–828

    Article  CAS  Google Scholar 

  • Hood WF, Compton RP, Monahan JB (1989) D-Cycloserine: a ligand for the N-methyl-D-aspartate coupled glycine receptor has partial agonist properties. Neurosci Lett 98: 91–95

    Article  PubMed  CAS  Google Scholar 

  • Ingvar M, Ambros Ingerson J, Davis M, Granger R, Kessler M, Rogers GA, Schehr RS, Lynch G (1997) Enhancement by an ampakine of memory encoding in humans. Exp Neurol 146: 553–559

    Article  PubMed  CAS  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325: 529–531

    Article  PubMed  CAS  Google Scholar 

  • Klegeris A, McGeer PL (1997) beta-amyloid protein enhances macrophage production of oxygen free radicals and glutamate. J Neurosci Res 49: 229–235

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Weiler M (1995) Predicting psychotomimetic properties of PCP-like NMDA receptor antagonists. In: Fog R, Gerlach J, Hemmingsen R, Krogsgaard-Larsen P, Thaysen JH (eds) Schizophrenia — an integrated view. Alfred Benzon Symposium 38. Munksgaard, Copenhagen, pp 314–325

    Google Scholar 

  • Kornhuber J, Weiler M (1997) Psychotogenicity and NMDA receptor antagonism: implications for neuroprotective pharmacotherapy. Biol Psychiatry 41: 135–144

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Bormann J, Retz W, Hübers M, Riederer P (1989) Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 166: 589–590

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Bormann J, Hübers M, Rusche K, Riederer P (1991) Effects of the 1-aminoadamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human postmortem brain study. Eur J Pharmacol Mol Pharmacol Sect 206: 297–300

    Article  CAS  Google Scholar 

  • Kornhuber J, Weiler M, Schoppmeyer K, Riederer P (1994) Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm [Suppl] 43: 91–104

    CAS  Google Scholar 

  • Kornhuber J, Retz W, Sitzmann L, Schmidtke A, Herbert MK (1996) The NMDA-receptor antagonist memantine is not psychotomimetic in young healthy volunteers. Soc Neurosci Abstr 22: 178

    Google Scholar 

  • Krömer RT, Koutsilieri E, Hecht P, Liedl KR, Riederer P, Kornhuber J (1998) Quantitative analysis of the structural requirements for blockade of the NMDA receptor at the PCP binding site. J Med Chem 41: 393–400

    Article  Google Scholar 

  • Lawlor BA, Davis KL (1992) Does modulation of glutamatergic function represent a viable therapeutic stragegy in Alzheimer’s disease? Biol Psychiatry 31: 337–350

    Article  PubMed  CAS  Google Scholar 

  • Li S, Mallory M, Alford M, Tanaka S, Masliah E (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56: 901–911

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40: 759–766

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) β-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12: 376–389

    PubMed  CAS  Google Scholar 

  • Misztal M, Frankiewicz T, Parsons CG, Danysz W (1996) Learning deficits induced by chronic intraventricular infusion of quinolinic acid — protection by MK-801 and memantine. Eur J Pharmacol 296: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Monahan JB, Handelmann GE, Hood WF, Cordi AA (1989) D-cycloserine, a positive modulator of the N-methyl-D-aspartate receptor, enhances performance of learning tasks in rats. Pharmacol Biochem Behav 34: 649–653

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1978) Neurotoxicity of excitatory amino acids. In: McGeer EG, Olney JW, McGeer PL (eds) Kainic acid as a tool in neurobiology. Raven Press, New York, pp 95–121

    Google Scholar 

  • Pantev M, Ritter R, Görtelmeyer R (1993) Clinical and behavioural evaluation in long-term care patients with mild to moderate dementia under memantine treatment. Z Gerontopsychol 6: 103–117

    Google Scholar 

  • Parsons CG, Quack G, Bresink I, Baran L, Przegalinski E, Kostowski W, Krzascik P, Hartmann S, Danysz W (1995) Comparison of the potency, kinetics and voltage-dependency of open channel blockade for a series of uncompetitive NMDA antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 34: 1239–1258

    Article  PubMed  CAS  Google Scholar 

  • Perl TM, Bedard L, Kosatsky T, Hockin JC, Todd ECD, Remis RS (1990) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 25: 1775–1780

    Article  Google Scholar 

  • Pomara N, Mendels PA, LeWitt PA, Reisberg B, Nair N, Dysken M, Wood J, Fakouhi TD, Herting RL (1991) Multicenter trial of milacemide in the treatment of Alzheimer’s disease. Biol Psychiatry 29: 701S

    Google Scholar 

  • Randolph C, Roberts JW, Tierney MC, Bravi D, Mouradian MM, Chase TN (1994) D-Cycloserine treatment of Alzheimer disease. Alzheimer Dis Assoc Disord 8: 198–205

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Lange KW, Kornhuber J, Danielczyk W (1991) Pharmacotoxic psychosis after memantine in Parkinson’s disease. Lancet 338: 1022–1023

    Article  PubMed  CAS  Google Scholar 

  • Schuster GM, Schmidt WJ (1992) D-cycloserine reverses the working memory impairment of hippocampal-lesioned rats in a spatial learning task. Eur J Pharmacol 224: 97–98

    Article  PubMed  CAS  Google Scholar 

  • Schwartz BL, Hashtroudi S, Herting RL, Handerson H, Deutsch SI (1991) Glycine prodrug facilitates memory retrieval in humans. Neurology 41: 1341–1343

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum JS, Zatorre RJ, Carpenter S, Gendron D, Evans AC, Gjedde A, Cashman NR (1990) Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N Engl J Med 322: 1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Thompson LT, Moskal JR, Disterhoft JF (1992) Hippocampus-dependent learning facilitated by a monoclonal antibody or D-cycloserine. Nature 359: 638–641

    Article  PubMed  CAS  Google Scholar 

  • Tymianski M, Charlton MP, Carlen PL, Tator CH (1993) Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13: 2085–2104

    PubMed  CAS  Google Scholar 

  • Watson GB, Bolanowski MA, Baganoff MP, Deppeler CL, Lanthorn TH (1990) D-cycloserine acts as a partial agonist at the glycine modulatory site of the NMDA receptor expressed in Xenopus oocytes. Brain Res 510: 158–160

    Article  PubMed  CAS  Google Scholar 

  • Zajaczkowski W, Danysz W (1997) Effects of D-cycloserine and aniracetam on spatial learning in rats with entorhinal cortex lesions. Pharmacol Biochem Behav 56: 21–29

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Kornbuber, J., Wiltfang, J. (1998). The role of glutamate in dementia. In: Jellinger, K., Fazekas, F., Windisch, M. (eds) Ageing and Dementia. Journal of Neural Transmission. Supplementa, vol 53. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6467-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6467-9_24

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83114-4

  • Online ISBN: 978-3-7091-6467-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics