Skip to main content

Optimal Efficiency of a Robot Environment Interaction Task in a Matching Impedance Approach

  • Conference paper
Theory and Practice of Robots and Manipulators

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 361))

  • 200 Accesses

Abstract

This paper investigates a matched impedance approach using scattering waves in robot manipulators task in contact with the environment. Given that the dynamic performance of robot in constrained situations is very dependent on the environment parameters, matched conditions are established to optimize the power transferred on a fixed configuration. Simulations show that on matched conditions, the coupled robot-environment consume maximum power supplied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ac :

Controller-actuator gain (diagonal matrix)

B:

Force / velocity relation

Bc :

Damping matrix of controller actuator

Be :

Damping matrix of environment

Br :

Damping matrix of the robot

Cc :

Input torque

Ce :

Environment torque

F:

Contact force

Fe :

Environment contact force

g(θ):

Robot gravity terms

I(θ):

Inertia tensor in actuator coordinates

J(θ):

Jacobian

K:

Force / displacement relation

Kc :

Stiffness matrix of controller actuator

Ke :

Stiffness matrix of environment

Kr :

Stiffness matrix of the robot

L1,L2 :

Link lengths

M:

Inertia tensor in end point coordinates

Mc :

Inertia matrix of controller actuator

Me :

Inertia matrix of environment

Mr :

Inertia matrix of the robot

Rc:

real part of Zc

Re:

real part of Ze

Rr:

real part of Zr

Rre:

real part of Zre

Rp:

Real part of Zp

S:

Power wave scattering matrix

Ve :

Environment velocity

Vin :

Nominal velocity input

X:

End point position

Xc:

Imaginary part of Zc

Xe:

Imaginary part of Ze

Xr:

Imaginary part of Zr

Xre:

Imaginary part of Zre

Zc :

Controller-actuator impedance

Ze :

Environment impedance

Zp:

Diagonal matrix of internal impedance of the circuit

Zr:

Robot impedance

Zre:

coupling robot-environment impedance

θ:

Actuator position or angle

θ12 :

Absolute joint angle

θin :

Desired joint position

θe :

Environment equilibrium position in joint frame

Ωin :

Joint velocity input

Ωe :

Environment velocity

τint :

Interface torque

References

  1. Goldenberg A. A.,“ Implementation of force and impedance control in Robot manipulators”, IEEE Int. Conf. on Robotic and Automation, Philadelphia,1988.

    Google Scholar 

  2. HOGAN N. “ Impedance Control: An Approach to Manipulation”, ASME Journal of Dynamic Systems, Measurement and Control, Vol 107, 1985, pp 1–24

    Article  MATH  Google Scholar 

  3. Raibert M. H., Craig J. J. “ Hybrid Position/ Force Control of Manipulators”, ASME Journal of Dynamic Systems, Measurement and Control, Vol 102, 1981, pp 418–432

    Google Scholar 

  4. Simon J.P., Betemps M., Jutard A., “Matching Impedance Model of a constrained robot-environment task using scattering S matrix”, IFACS-IMACS-IEEE International Workshop on Motion Control for Intelligent Automation, Vol 2, pp 31–37, Perugia Italy 27–29 October 1992.

    Google Scholar 

  5. Simon J.P., Betemps M., Jutard A., “Application to the Wave Scatter Theory to the Impedance Model of a Robot ”, INRIA–SIAM Int. Conf. on Mathematical and Numerical Aspect of propagation Phenomena, Strasbourg, April 23–26, 1991

    Google Scholar 

  6. Simon J.P., Betemps M. “An Active Compliant Parallel Link Manipulator” IEEE–IES Int Workshop on Sensorial Integration for Industrial Robots, Zaragoza, Nov 22–24 1989

    Google Scholar 

  7. Kurokawa K.,“ Power Waves and Scattering Matrix”, IEEE on Transaction Microwaves Theory and Techiques. March 1965.

    Google Scholar 

  8. Oswald J. “ Sur la repartition de l’énergie dans les réseaux linéaires” Câbles et Transmissions, Octobre 1958, pp 303–326

    Google Scholar 

  9. Rivier E., Sardos R. “La matrice S”, Edition Masson 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Wien

About this paper

Cite this paper

Ombede, G.A., Simon, J.P., Betemps, M., Jutard, A. (1995). Optimal Efficiency of a Robot Environment Interaction Task in a Matching Impedance Approach. In: Morecki, A., Bianchi, G., Jaworek, K. (eds) Theory and Practice of Robots and Manipulators. International Centre for Mechanical Sciences, vol 361. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2698-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2698-1_16

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82697-3

  • Online ISBN: 978-3-7091-2698-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics