Skip to main content

Aims, Scope, Basic Concepts and Methods of Topology Optimization

  • Chapter
Topology Optimization in Structural Mechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 374))

Abstract

Topology means the pattern of connectivity or spatial sequence of members or elements in a structure. Optimization of the topology is involved in two fundamental classes of problems, namely

  • layout optimization and

  • generalized (variable topology) shape optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

R.1 Books

  • Argyris, J.H. and Kelsey, S. 1960: Energy Theorems and Structural Analysis. Butter-work, London.

    Book  Google Scholar 

  • Bendsoe, M.P. 1991: Methods for the optimization of structural topology, shape and material. Rep. Math. Inst. Tech. Univ. Denmark, Lyngby, Denmark (also to be published as a book by Springer-Verlag).

    Google Scholar 

  • Prager, W. 1974: Introduction to Structural Optimization. (Course held at Int. Centre for Mech. Sci. Udine, CISM) 212. Springer-Verlag, Vienna.

    Google Scholar 

  • Rozvany, G.I.N. 1989: Structural Design via Optimality Criteria. Kluwer, Dordrecht.

    Book  MATH  Google Scholar 

R.2 Review Papers

  • Bendsoe, M.P.; Ben-Tal, A. and Zowe, J. 1994: Optimization methods for truss geometry and topology design. Struct. Optim. 7, 141–159.

    Article  Google Scholar 

  • Prager, W. and Rozvany, G.I.N. 1977: Optimization of structural geometry. In: Bednarek, A.R. and Cesari, L. (Eds.) Dynamical Systems, pp. 265–293. Academic Press, New York.

    Google Scholar 

  • Rozvany, G.I.N. and Ong, T.G. 1986b: Optimal plastic design of plates, shells and shellgrids. In: Bevilacqua, L.; Feijdo, R. and Valid, R. (Eds.) Inelastic Behaviour of Plates and Shells (Proc. IUTAM Symp., Rio de Janeiro, 1985 ), pp. 357–384. Springer-Verlag, Berlin.

    Google Scholar 

R.3 Research Papers, Doctoral Theses and Research Reports

  • Allaire, G. and Kohn, R.V. 1993a: Explicit bounds on the elastic energy of a two-phase composite in two space dimensions. Q. Appl. Math. 51, 675–699.

    MathSciNet  MATH  Google Scholar 

  • Allaire, G. and Kohn, R.V. 1993b: Optimal bounds on the effective behaviour of a mixture of two well-ordered elastic materials. Q. Appl. Math. 51, 643–674.

    MathSciNet  MATH  Google Scholar 

  • Allaire, G. and Kohn, R.V. 1993c: Topology optimization and optimal shape design using homogenization. In: Bendsoe, M.P. and Mota Soares, C.A. (Eds.) Topology Design of Structures (Proc. NATO ARW, Sesimbra, Portugal, 1992 ), pp. 207–218. Kluwer, Dordrecht.

    Google Scholar 

  • Bendsoe, M.P. 1989: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202.

    Article  Google Scholar 

  • Bendsoe, M.P. and Haber, R.B. 1993: The Michell layout problem as a low volume fraction limit of the perforated plate topology optimization problem: an asymptotic study. Struct. Optim. 6, 263–267.

    Article  Google Scholar 

  • Bendsoe, M.P. and Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenization method. Comp. Meth. Appl. Mech. Eng. 71, 197–224.

    Article  MathSciNet  Google Scholar 

  • Birker, T. 1996: New developments in structural optimization using optimality criteria. Doctoral Thesis, Essen University. Also: Series 18, No. 199, VDI-Verlag, Düsseldorf.

    Google Scholar 

  • Cheng, G.D. and Guo, X. 1997: e-relaxed approach in structural topology. Struct. Optim. 13 (in press).

    Google Scholar 

  • Cheng, K.-T. and Jiang, Z. 1992: Study on topology optimization with stress constraints. Eng. Optim. 20, 129–148.

    Article  Google Scholar 

  • Cox, H.L. 1958: The theory of design. Rep. Aeronautical Res. Council, No. 2037.

    Google Scholar 

  • Dorn, W.S.; Gomory, R. E. and Greenberg, H.J. 1964: Automatic design of optimal structures. J. de Mécanique 3, 25–52.

    Google Scholar 

  • Gibiansky, L.V. and Cherkaev, A.V. 1984: Design of composite plates of optimal rigidity. Rept. No. 914, A.F. Ioffe Physical Technical Institute, Academy of Sciences of the USSR, Leningrad (in Russian).

    Google Scholar 

  • Hegemier, G.A. and Prager, W. 1969: On Michell trusses. Int. J. Mech. Sci. 11, 209–215.

    Article  MATH  Google Scholar 

  • Huang, N.C. 1971: On principle of stationary mutual complementary energy and its application to structural design. ZAMP 22, 608–620.

    Article  MATH  Google Scholar 

  • Karolyi, G. and Rozvany, G.I.N. 1997: Exact analytical solutions for nonselfadjoint variable-topology shape optimization problems: perforated cantilever plates in plane stress subject to displacement constraints. Struct. Optim. 13 (in press).

    Google Scholar 

  • Kirsch, U. 1990: On singular topologies in structural design. Struct. Optim. 2, 133–142.

    Article  Google Scholar 

  • Kirsch, U. 1995: Layout optimization using reduction and expansion processes. In: Olhoff, N. and Rozvany, G.I.N. (Eds.) Proc. First World Congr. Struct. Multidisc. Optim. pp. 95–102. Pergamon, Oxford.

    Google Scholar 

  • Kohn, R.V. and Strang, G. 1986a: Optimal design and relaxation of variational problems, I, II, and III. Comm. Pure Appl. Math. 39, 113–137, 139–182, 353–377.

    Google Scholar 

  • Lewinski, T.; Zhou, M. and Rozvany, G.I.N. 1994: Extended exact solutions for least-weight truss layouts — Part I: cantilever with a horizontal axis of symmetry. Int. J. Mech. Sci. 36, 5, 375–398.

    Article  MATH  Google Scholar 

  • Lowe, P.G. and Melchers, R.E. 1972–1973: On the theory of optimal constant thickness fibre-reinforced plates. I, II, III. Int. J. Mech. Sci. 14 311–324, 15 157–170, 15 711–726.

    Google Scholar 

  • Lurie, K.A. 1994: Direct relaxation of optimal layout problems for plates. JOTA 80, 93–116.

    Article  MathSciNet  MATH  Google Scholar 

  • Lurie, K.A. 1995a: On direct relaxation of optimal material design problems for plates. WSSIAA 5, 271–296.

    MathSciNet  Google Scholar 

  • Lurie, K.A. 1995b: An optimal plate. In: Olhoff, N.; Rozvany, G.I.N. (Eds.) Proc. First World Cong. Struct. Multidisc. Optim. pp. 169–176. Pergamon, Oxford.

    Google Scholar 

  • Lurie, K.A.; Cherkaev, A.V. and Fedorov, A.V. 1982: Regularization of optimal design problems for bars and plates. JOTA, 37, 499–522 (Part I); 37, 523–543 (Part II) and 42, 247–282 (Part I II ).

    Google Scholar 

  • Michell, A.G.M. 1904: The limits of economy of material in frame-structures. Phil. Mag. 8, 589–597.

    Article  MATH  Google Scholar 

  • Morley, C.T. 1966: The minimum reinforcement of concrete slabs. Int. J. Mech. Sci. 8, 305–319.

    Article  Google Scholar 

  • Niordson, F.I. 1983a: Optimal design of elastic plates with constraint on the slope of the thickness function. Int. J. Solids Struct. 19, 141–151.

    Article  MATH  Google Scholar 

  • Niordson, F.I. 1983b: Some new results regarding optimal design of elastic plates. In: Eschenauer, H.; Olhoff, N. (Eds.) Optimization Methods in Structural Design, pp. 380–286. Wissenschaftsverlag, Mannheim.

    Google Scholar 

  • Ong, T.G. 1987: Structural optimization via static-kinematic optimality criteria. Ph.D. Thesis, Monash University, Melbourne.

    Google Scholar 

  • Ong, T.G.; Rozvany, G.I.N. and Szeto, W.T. 1988: Least-weight design of perforated elastic plates for given compliance: non-zero Poisson’s ratio. Comp. Meth. Appl. Mech. Eng. 66, 301–322.

    Article  MATH  Google Scholar 

  • Prager, W. 1978a: Nearly optimal design of trusses. Comp. Struct. 8, 451–454.

    Article  MATH  Google Scholar 

  • Prager, W. 1978b: Optimal layout of trusses with a finite number of joints. J. Mech. Phys. Solids 26, 241–250.

    Article  Google Scholar 

  • Prager, W. and Shield, R.T. 1967: A general theory of optimal plastic design. J. Appl. Mech. 34, 1, 184–186.

    Article  MATH  Google Scholar 

  • Rozvany, G.I.N. 1966: A rational approach to plate design. J. Amer. Conc. Inst. 63, 1077–1094.

    Google Scholar 

  • Rozvany, G.I.N. 1992: Optimal layout theory: analytical solutions for elastic structures with several deflection constraints and load conditions. Struct. Optim. 4, 247–249.

    Article  Google Scholar 

  • Rozvany, G.I.N. 1996: Difficulties in truss topology optimization with stress, local buckling and system buckling constraints. Struct. Optim. 11, 213–217.

    Article  Google Scholar 

  • Rozvany, G.I.N. and Birker, T. 1994: On singular topologies in exact layout optimization. Struct. Optim. 8, 228–235.

    Article  Google Scholar 

  • Rozvany, G.I.N.; Gerdes, D. and Gollub, W. 1996: Ein analytischer Computeralgorith-, mus zum Auffinden optimaler Tragstrukturen bei Beigebeanspruchung. Research Rep. No. 69. Civil Eng. Dept., Essen University.

    Google Scholar 

  • Rozvany, G.I.N. and Hill, R.H. 1978: A computer algorithm for deriving analytically and plotting optimal structural layout. Comp. Struct. 10, 295–300.

    Article  Google Scholar 

  • Rozvany, G.I.N.; Olhoff, N.; Bendsoe, M.P.; Ong, T.G. and Szeto, W.T. 1985: Least-weight design of perforated elastic plates. DCAMM Report No. 306. Techn. Univ. Denmark, Lyngby.

    Google Scholar 

  • Rozvany, G.I.N.; Olhoff, N.; Bendsoe, M.P.; Ong, T.G.; Sandler, R. and Szeto, W.T. 1987: Least-weight design of perforated elastic plates I, II. Int. J. Solids Struct. 23, 521–536, 537–550.

    Google Scholar 

  • Rozvany, G.I.N. and Prager, W. 1976: Optimal design of partially discretized grillages. J. Mech. Phys. Solids 24, 125–136.

    Article  MATH  Google Scholar 

  • Rozvany, G.I.N. and Sobieszczanski-Sobieski, J. 1992: New optimality criteria methods: forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections. Struct. Optim. 4, 244–246.

    Article  Google Scholar 

  • Rozvany, G.I.N. and Zhou, M. 1991a: Applications of the COC method in layout optimization. In: Eschenauer, H.; Matteck, C. and Olhoff, N. (Eds.) Proc. Int. Conf. “Engineering Optimization in Design Processes” (Karlsruhe 1990 ), pp. 59–70. Springer-Verlag, Berlin.

    Google Scholar 

  • Rozvany, G.I.N. and Zhou, M. 1996: Advances in overcoming computational pitfalls in topology optimization. Proc. 6th AIAA/NASA/ISSMO Symp. on Multidisc. Anal. Optim. A. I. A.A., Reston, VA.

    Google Scholar 

  • Rozvany, G.I.N.; Zhou, M. and Birker, T. 1993: Why multiload topology designs based on orthogonal microstructures are in general nonoptimal. Struct. Optim. 6, 200–204.

    Article  Google Scholar 

  • Shield, R.T. and Prager, W. 1970: Optimum structural design for given deflection. ZAMP 21, 513–523.

    Article  MATH  Google Scholar 

  • Sigmund, O.; Zhou, M. and Rozvany, G.I.N. 1993: Layout optimization of large FE-systems by new optimality criteria methods: applications to beam systems. In: Haug, E.J. (Ed.) Proc. NATO ASI Concurrent Engineering Tools and Technologies for Mechanical System Design (Iowa, 1992 ). Springer-Verlag, Berlin.

    Google Scholar 

  • Sved, G. 1954: The minimum weight of certain redundant structures. Austral. J. Appl. Sci. 5, 1–8.

    Google Scholar 

  • Szeto, W.T. 1989: Microstructure studies and structural optimization. Ph.D. Thesis, Monash University, Melbourne.

    Google Scholar 

  • Vigdergauz, S. 1986: Effective elastic parameters of a plate with a regular system of equal-strength holes. Mechanics of Solids (transl. of Mekh. Tver. Tela.) 21, 162–166.

    Google Scholar 

  • Zhou, M. 1996: Difficulties in truss topology optimization with stress and local buckling constraints. Struct. Optim. 11, 134–136.

    Article  Google Scholar 

  • Zhou, M. and Rozvany, G.I.N. 1992/1993: DCOC: an optimality criteria method for large systems. Part I: theory. Part II: algorithm. Struct. Optim. 5 12–25; 6 250–262.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Rozvany, G.I.N. (1997). Aims, Scope, Basic Concepts and Methods of Topology Optimization. In: Rozvany, G.I.N. (eds) Topology Optimization in Structural Mechanics. International Centre for Mechanical Sciences, vol 374. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2566-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2566-3_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82907-3

  • Online ISBN: 978-3-7091-2566-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics