Skip to main content

Targeted 13C-Labeled Tracer Fate Associations for Drug Efficacy Testing in Cancer

  • Chapter
Tumor Cell Metabolism

Abstract

Metabolomics technologies continue to develop not only to study endpoint steady-state concentrations of numerous metabolites in normal and cancer cells but also to examine metabolic flux and networks. These techniques are of importance for understanding tumor cell metabolism and for the development of new drugs and treatment strategies. The choice of tracer substrates is central as 13C-labeled substrates readily improve real-time reaction visibility by increasing metabolic network transparencies in cancer metabolomics. In this chapter, targeted [1,2- 13C2]-d-glucose single tracer fate associations are compared with the external [U- 13C18]-stearate oxidation model for thiazolidinedione efficacy testing in primary liver tumor cells. Although the externally supplied [U- 13C18]-stearate tracer readily labels multiple products by acetyl-CoA exchange, parallel stearate synthesis and mobilization from unlabeled intracellular pools disrupt its uptake after drug treatment. This can be overcome by using cross-labeled 13C-stearate from [1,2- 13C2]-d-glucose as the internal tracer and the independent explanatory variable to study associations among markers of rosiglitazone-induced stearate breakdown in a single [1,2- 13C2]-d-glucose tracer experiment during drug efficacy testing in cultured cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beger RD, Colatsky T (2011) Metabolomics data and the biomarker qualification process. Metabolomics 8:2–7

    Article  Google Scholar 

  • Beger RD et al (2009) Single valproic acid treatment inhibits glycogen and RNA ribose turnover while disrupting glucose-derived cholesterol synthesis in liver as revealed by the [U- 13C6]-d-glucose tracer in mice. Metabolomics 5:336–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boros LG, Cascante M, Lee WN (2002) Metabolic profiling of cell growth and death in cancer: applications in drug discovery. Drug Discov Today 7:364–372

    Article  CAS  PubMed  Google Scholar 

  • Boros LG, Serkova NJ, Laderoute KR, Linehan WM, Meuillet MJ (2013) Stable 13C isotope enriched metabolome (isotopolome) wide associations (IWAS) improve system wide association studies (SWAS) for phenotype and drug research. World Biotechnology Congress 4:A29, SL-31. http://www.worldbiotechcongress.com/files/Abstract-Book-GBC-(2013).pdf

  • Chang CH, Lin JW, Wu LC, Lai MS, Chuang LM, Chan KA (2012) Association of thiazolidinediones with liver cancer and colorectal cancer in type 2 diabetes mellitus. Hepatology 55:1462–72. doi:10.1002/hep.25509

    Article  CAS  PubMed  Google Scholar 

  • Darmaun D, Matthews DE, Desjeux JF, Bier DM (1988) Glutamine and glutamate nitrogen exchangeable pools in cultured fibroblasts: a stable isotope study. J Cell Physiol 134:143–148

    Article  CAS  PubMed  Google Scholar 

  • Haber S, Lapidot A (2001) Energy fuel utilization by fetal versus young rabbit brain: a 13C MRS isotopomer analysis of [U-13C6]glucose metabolites. Brain Res 896:102–117

    Article  CAS  PubMed  Google Scholar 

  • Harrigan GG, Colca JR, Szalma S, Boros LG (2006) PNU-91325 increases fatty acid synthesis from glucose and mitochondrial long chain fatty acid degradation: a comparative tracer-based metabolomics study with rosiglitazone and pioglitazone in HepG2 cells. Metabolomics 2:21–29. doi:10.1007/s11306-006-0015-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hellerstein MK (1991) Relationship between precursor enrichment and ratio of excess M2/excess M1 isotopomer frequencies in a secreted polymer. J Biol Chem 266:10920–10924

    CAS  PubMed  Google Scholar 

  • Holleran AL, Briscoe DA, Fiskum G, Kelleher JK (1995) Glutamine metabolism in AS-30D hepatoma cells. Evidence for its conversion into lipids via reductive carboxylation. Mol Cell Biochem 152:95–101

    Article  CAS  PubMed  Google Scholar 

  • Katz J, Wals P, Lee WN (1993) Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate. J Biol Chem 268:25509–25521

    CAS  PubMed  Google Scholar 

  • Lee WN, Bergner EA, Guo ZK (1992) Mass isotopomer pattern and precursor-product relationship. Biol Mass Spectrom 21:114–122

    Article  CAS  PubMed  Google Scholar 

  • Lee WN, Edmond J, Bassilian S, Morrow JW (1996) Mass isotopomer study of glutamine oxidation and synthesis in primary culture of astrocytes. Dev Neurosci 18:469–477

    Article  CAS  PubMed  Google Scholar 

  • Lee WN, Lim S, Bassilian S, Bergner EA, Edmond J (1998a) Fatty acid cycling in human hepatoma cells and the effects of troglitazone. J Biol Chem 273:20929–20934

    Article  CAS  PubMed  Google Scholar 

  • Lee WN, Boros LG, Puigjaner J, Bassilian S, Lim S, Cascante M (1998b) Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose. Am J Physiol 274:E843–E851

    CAS  PubMed  Google Scholar 

  • Leimer KR, Rice RH, Gehrke CW (1977) Complete mass spectra of N-trifluoroacetyl-n-butyl esters of amino acids. J Chromatogr 141:121–144

    Article  CAS  PubMed  Google Scholar 

  • Lowenstein JM, Brunengraber H, Wadke M (1975) Measurement of rates of lipogenesis with deuterated and tritiated water. Methods Enzymol 35:279–287

    Article  CAS  PubMed  Google Scholar 

  • Metallo CM, Walther JL, Stephanopoulos GJ (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144:167–174. doi:10.1016/j.ymben.2011.12.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385–388

    PubMed Central  PubMed  Google Scholar 

  • Otto C, Lehrke M, Goke B (2002) Novel insulin sensitizers: pharmacogenomic aspects. Pharmacogenomics 3:99–116

    Article  CAS  PubMed  Google Scholar 

  • Sabate L, Franco R, Canela EI, Centelles JJ, Cascante M (1995) A model of the pentose phosphate pathway in rat liver cells. Mol Cell Biochem 142:9–17

    Article  CAS  PubMed  Google Scholar 

  • Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, Kang Y, Fleming JB, Bardeesy N, Asara JM, Haigis MC, DePinho RA, Cantley LC, Kimmelman AC (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496:101–105. doi:10.1038/nature12040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sonko BJ, Schmitt TC, Guo L, Shi Q, Boros LG, Leakey JE, Beger RD (2011) Assessment of usnic acid toxicity in rat primary hepatocytes using 13C isotopomer distribution analysis of lactate, glutamate and glucose. Food Chem Toxicol 49:2968–2974

    Article  CAS  PubMed  Google Scholar 

  • Vance DE, Vance KE (2002) Biochemistry of lipids, lipoproteins and membranes, 4th edn. Elsevier Science, New York, pp 183–187

    Google Scholar 

  • Vamecq J, Colet J-M, Vanden Eynde JJ, Briand G, Porchet N, Rocchi S (2012) PPARs: interference with Warburg’ effect and clinical anticancer trials. PPAR Res Article ID 304760

    Google Scholar 

  • Walther JL, Metallo CM, Zhang J, Stephanopoulos G (2012) Optimization of 13C isotopic tracers for metabolic flux analysis in mammalian cells. Metab Eng 14:162–171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong DA, Bassilian S, Lim S, Lee WN (2004) Coordination of peroxisomal beta-oxidation and fatty acid elongation in HepG2 cells. J Biol Chem 279:41302–41309

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Lane AN, Ricketts C, Wei M-H, Pike L, Wu M, Rouault TA, Boros LG, Fan TW-M, Linehan WM (2013) Metabolic reprogramming for producing energy and reducing power in Fumarate Hydratase null cells from hereditary leiomyomatosis renal cell carcinoma. PLoS One 8:e72179. doi:10.1371/journal.pone.0072179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Isotopolome-wide mathematical fitting of GC-MS data involving 13C-glucose with 13C-stearate to product processing was supported by the Hirshberg Foundation for Pancreatic Cancer Research and the UCLA Clinical and Translational Science Institute (UL1TR000124) to LGB and EJM. Targeted 13C tracer drug efficacy marker data diagnostics for cancer were partially supported by the European Regional Development Fund, Central Hungary Operative Program, and New Széchenyi Plan (KMOP-1.1.4-11/A-2011-01-05) to GS. We thank Eszter Boros and Ferenc Nádudvari for their technical help in registering additional 13C tracer presentation by LGB on the World Wide Web at http://youtu.be/GkYAjabGxJs regarding mammalian cell mitochondria.

Conflict of Interest

The authors declare no conflict of financial interest.

Disclaimer

The views presented in this article do not necessarily reflect those of the Food and Drug Administration (FDA) of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László G. Boros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Boros, L.G. et al. (2015). Targeted 13C-Labeled Tracer Fate Associations for Drug Efficacy Testing in Cancer. In: Mazurek, S., Shoshan, M. (eds) Tumor Cell Metabolism. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1824-5_15

Download citation

Publish with us

Policies and ethics