Skip to main content

Lipopolysaccharide and Its Interactions with Plants

  • Chapter
  • First Online:
Bacterial Lipopolysaccharides

Abstract

In an environment that is rich in potentially pathogenic microorganisms, the survival of higher eukaryotic organisms depends on efficient pathogen sensing and rapidly mounted defence responses. Such protective mechanisms are found in all multicellular organisms and are collectively referred to as innate immunity. Innate immunity is the first line of defence against invading microorganisms in vertebrates and the only line of defence in invertebrates and plants [1]. Plants interact with a variety of microorganisms, and like insects and mammals, they respond to a broad range of microbial molecules. The recognition of non-self induces plant defence responses such as the oxidative burst, nitric oxide (NO) generation, extracellular pH increase, cell wall strengthening and pathogenesis-related (PR) protein accumulation, leading to basal resistance or innate immunity. Recognition of non-self, such as an invading pathogen, is crucial for an effective defence response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Baarlen P, van Belkum A, Thomma PHJ (2007) Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects. Drug Discov Today 12:167–173

    Article  Google Scholar 

  2. Ausubel F (2005) Are innate immune signalling pathways in plants and animals conserved? Nat Immunol 6:973–979

    Article  CAS  Google Scholar 

  3. Janeway CA (1992) The immune-system evolved to discriminate infectious nonself from non-infectious self. Immunol Today 13:11–16

    Article  CAS  Google Scholar 

  4. Bedini E, De Castro C, Erbs G, Mangoni L, Dow JM, Newman MA, Parrilli M, Unverzagt C (2005) Structure-dependent modulation of a pathogen response in plants by synthetic O-antigen polysaccharides. J Am Chem Soc 127:2414–2416

    Article  CAS  Google Scholar 

  5. Dow M, Newman MA, von Roepenack E (2000) The induction and modulation of plant defence responses by bacterial lipopolysaccharides. Annu Rev Phytopathol 38:241–261

    Article  CAS  Google Scholar 

  6. Newman MA, Daniels MJ, Dow JM (1995) Lipopolysaccharide from Xanthomonas campestris induces defence-related gene expression in Brassica campestris. Mol Plant Microb Interact 8:778–780

    Article  CAS  Google Scholar 

  7. Silipo A, Molinaro A, Sturiale L, Dow JM, Erbs G, Lanzetta R, Newman MA, Parrilli M (2005) The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J Biol Chem 280:33660–33668

    Article  CAS  Google Scholar 

  8. Erbs G, Silipo A, Aslam S, De Castro C, Liparoti V, Flagiello A, Pucci P, Lanzetta R, Parrilli M, Molinaro A, Newman MA, Cooper RM (2008) Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomanas elicit innate immunity: structure and activity. Chem Biol 15:438–448

    Article  CAS  Google Scholar 

  9. Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  Google Scholar 

  10. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  Google Scholar 

  11. Newman MA, Dow JM, Molinaro A, Parrilli M (2007) Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. J Endotoxin Res 13:69–84

    Article  CAS  Google Scholar 

  12. Zeidler D, Zähringer U, Gerber I, Dubery I, Hertung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana lipopolysaccharides activate nitric oxide synthase NOS and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    Article  CAS  Google Scholar 

  13. Meyer A, Pühler A, Niehaus K (2001) The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. Planta 213:214–222

    Article  CAS  Google Scholar 

  14. Desaki Y, Miya A, Venkatesh B, Tsuyumu S, Yamane H, Kaku H, Minami E, Shibuya N (2006) Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol 47:1530–1540

    Article  CAS  Google Scholar 

  15. Keshavarzi M, Soylu S, Brown I, Bonas U, Nicole M, Rossiter J, Mansfield J (2004) Basal defenses induced in pepper by lipopolysaccharides are suppressed by Xanthomonas campestris pv. vesicatoria. Mol Plant Microb Interact 17:805–815

    Article  CAS  Google Scholar 

  16. Livaja M, Zeidler D, von Rad U, Durner J (2008) Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide. Immunobiology 213:161–171

    Article  CAS  Google Scholar 

  17. Gerber IB, Laukens K, De Vijlder T, Witters E, Dubery IA (2008) Proteomic profiling of cellular targets of lipopolysaccharide-induced signaling in Nicotiana tabacum BY-2 cells. Biochim Biophys Acta 1784:1750–1762

    Article  CAS  Google Scholar 

  18. Gerber IB, Laukens K, Witters E, Dubery IA (2006) Lipopolysaccharide-responsive phosphoproteins in Nicotiana tabacum cells. Plant Physiol Biochem 44:369–379

    Article  CAS  Google Scholar 

  19. Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50:500–513

    Article  CAS  Google Scholar 

  20. Conrath U, Beckers GJ, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microb Interact 19:1062–1071

    Article  CAS  Google Scholar 

  21. Newman MA, von Roepenack EC, Daniels MJ, Dow JM (2000) Lipopolysaccharides and plant responses to phytopathogenic bacteria. Mol Plant Pathol 1:25–31

    Article  CAS  Google Scholar 

  22. Newman MA, von Roepenack-Lahaye E, Parr A, Daniels MJ, Dow JM (2002) Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J 29:485–497

    Article  Google Scholar 

  23. Newman MA, von Roepenack-Lahaye E, Parr A, Daniels MJ, Dow JM (2001) Induction of hydroxycinnamoyl-tyramine conjugates in pepper by Xanthomonas campestris, a plant defense response activated by hrp gene-dependent and hrp gene-independent mechanisms. Mol Plant Microb Interact 14:785–792

    Article  CAS  Google Scholar 

  24. Keller H, Hohlfeld H, Wray V, Hahlbrock K, Scheel D, Strack D (1996) Changes in the accumulation of soluble and cell wall-bound phenolics in elicitor-treated cell suspension cultures and fungus infected leaves of Solanum tuberosum. Phytochemistry 42:389–396

    Article  CAS  Google Scholar 

  25. Alfano JR, Collmer A (2004) Type III secretion system effector proteins. Double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414

    Article  CAS  Google Scholar 

  26. He P, Shan L, Lin NC, Martin GB, Kemmerling B, Nürnberger T, Sheen J (2006) Specific bacterial suppressors of MAMP signalling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125:563–575

    Article  CAS  Google Scholar 

  27. Jamir Y, Guo M, Oh HS, Petnicki-Ocwieja T, Chen S, Tang X, Dickman MB, Collmer A, Alfano JR (2004) Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. Plant J 37:554–565

    Article  CAS  Google Scholar 

  28. Nomura K, DebRoy S, Lee YH, Pumplin N, Jones J, He SY (2006) A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220–223

    Article  CAS  Google Scholar 

  29. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  Google Scholar 

  30. Holst H, Molinaro A (2009) Core region and lipid A components of lipopolysaccharides. In: Moran A, Brennan P, Holst O, von Itszstein M (eds) Microbial glycobiology: structures, relevance and applications. Elsevier, Oxford, pp 803–820

    Google Scholar 

  31. Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  Google Scholar 

  32. Newman MA, Daniels MJ, Dow JM (1997) The activity of lipid A and core components of bacterial lipopolysaccharides in the prevention of the hypersensitive response in pepper. Mol Plant Microb Interact 10:926–928

    Article  CAS  Google Scholar 

  33. Braun SG, Meyer A, Holst O, Pühler A, Niehaus K (2005) Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Mol Plant Microb Interact 18:674–681

    Article  CAS  Google Scholar 

  34. Leeman M, Vanpelt JA, Denouden FM, Heinsbroek M, Pahm B, Schippers B (1995) Induction of systemic resistance against fusarium-wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    Article  CAS  Google Scholar 

  35. van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  Google Scholar 

  36. Bedini E, Parrilli M, Unverzagt C (2002) Oligomerization of a rhamnanic trisaccharide repeating unit of O-chain polysaccharides from phytopathogenic bacteria. Tetrahedron Lett 43:8879–8882

    Article  CAS  Google Scholar 

  37. Loppnow H, Brade H, Durrbaum I, Dinarello CA, Kusumoto S, Rietschel ET, Flad HD (1989) IL-1 induction-capacity of defined lipopolysaccharide partial structures. J Immunol 142:3229–3238

    CAS  Google Scholar 

  38. Raetz CRH, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76:295–329

    Article  CAS  Google Scholar 

  39. Schromm AB, Brandenburg K, Loppnow H, Moran AP, Koch MHJ, Rietschel ET, Seydel U (2000) Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur J Biochem 267:2008–2013

    Article  CAS  Google Scholar 

  40. Schromm AB, Brandenburg K, Loppnow H, Zähringer U, Rietschel ET, Carroll SF, Koch MHJ, Kusumoto S, Seydel U (1998) The charge of endotoxin molecules influences their conformation and IL-6-inducing capacity. J Immunol 161:5464–5471

    CAS  Google Scholar 

  41. Gutsmann T, Schromm AB, Brandenburg K (2007) The physicochemistry of endotoxins in relation to bioactivity. Int J Med Microbiol 297:341–352

    Article  CAS  Google Scholar 

  42. Munford RS, Varley AW (2006) Shield as signal lipopolysaccharide and the evolution of immunity to gram-negative bacteria. PLoS Pathog 2:467–471

    Article  CAS  Google Scholar 

  43. Rallabhandi P, Awomoyi A, Thomas KE, Phalipon A, Fujimoto Y, Fukase K, Kusumoto S, Qureshi N, Sztein MB, Vogel SN (2008) Differential activation of human TLR4 by Escherichia coli and Shigella flexneri 2a lipopolysaccharide. Combined effects of lipid A acylation state and TLR4 polymorphisms on signaling. J Immunol 180:1139–1147

    CAS  Google Scholar 

  44. Erbs G, Jensen TT, Silipo A, Grant W, Dow JM, Molinaro A, Parrilli M, Newman MA (2008) An antagonist of lipid A action in mammals has complex effects on lipid A induction of defence responses in the model plant Arabidopsis thaliana. Microb Infect 10:571–574

    Article  CAS  Google Scholar 

  45. Silipo A, Sturiale L, Garozzo D, de Castro C, Lanzetta R, Parrilli M, Grant WD, Molinaro A (2004) Structure elucidation of the highly heterogeneous lipid A from the lipopolysaccharide of the gram-negative extremophile bacterium Halomonas magadiensis strain 21 M1. Eur J Org Chem 2263–2271

    Article  Google Scholar 

  46. Ialenti A, Di Meglio P, Grassia G, Maffia P, Di Rosa M, Lanzetta R, Molinaro A, Silipo A, Grant W, Ianaro A (2006) Novel lipid A from Halomonas magadiensis inhibits enteric LPS-induced human monocyte activation. Eur J Immunol 36:354–360

    Article  CAS  Google Scholar 

  47. Dow JM, Osbourn AE, Wilson TJG, Daniels MJ (1995) A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis. Mol Plant Microb Interact 8:768–777

    Article  CAS  Google Scholar 

  48. Silipo A, Sturiale L, Garozzo D, Erbs G, Jensen TT, Lanzetta R, Dow JM, Parrilli M, Newman MA, Molinaro A (2008) The acylation and phosphorylation pattern of lipid A from Xanthomonas campestris strongly influence its ability to trigger the innate immune response in Arabidopsis. Chembiochem 9:896–904

    Article  CAS  Google Scholar 

  49. Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    CAS  Google Scholar 

  50. Schneider M, Schweizer P, Meuwly P, Métraux JP (1996) Systemic acquired resistance in plants. Int Rev Cytol 168:303–340

    Article  CAS  Google Scholar 

  51. Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrits N, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    CAS  Google Scholar 

  52. Mishina TE, Zeier J (2006) The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol 141:1666–1675

    Article  CAS  Google Scholar 

  53. Medzhitov R, Preston-Hurlburt P, Janeway CA (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  Google Scholar 

  54. Hashimoto C, Hudson KL, Anderson KV (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269–279

    Article  CAS  Google Scholar 

  55. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  CAS  Google Scholar 

  56. Carpenter S, O’Neill LAJ (2007) How important are Toll-like receptors for antimicrobial responses? Cell Microbiol 9:1891–1901

    Article  CAS  Google Scholar 

  57. Inohara N, Ogura Y, Chen FF, Muto A, Nuñez G (2001) Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem 276:2551–2554

    Article  CAS  Google Scholar 

  58. Nürnberger T, Brunner F (2002) Innate immunity in plants and animals emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biol 5:1–7

    Article  Google Scholar 

  59. Miyake K (2004) Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol 12:186–192

    Article  CAS  Google Scholar 

  60. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Immunol 4:499–511

    Article  CAS  Google Scholar 

  61. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385:729–733

    Article  CAS  Google Scholar 

  62. Shurety W, Merino-Trigo A, Brown D, Hume DA, Stow JL (2000) Localization and post-Golgi trafficking of tumor necrosis factor-α in macrophages. J Interferon Cytokine Res 20:427–438

    Article  CAS  Google Scholar 

  63. Shurety W, Pagan JK, Prins JB, Stow JL (2001) Endocytosis of uncleaved tumor necrosis factor-α in macrophages. Lab Invest 81:107–117

    Article  CAS  Google Scholar 

  64. Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324

    Article  Google Scholar 

  65. Pagan JK, Wylie FG, Joseph S, Widberg C, Bryant NJ, James DE, Stow JL (2003) The t-SNARE syntaxin 4 is regulated during macrophage activation to function in membrane traffic and cytokine secretion. Curr Biol 13:156–160

    Article  CAS  Google Scholar 

  66. Bryant NJ, Govers R, David E, James DE (2002) Regulated transport of the glucose transporter GLUT4. Nature 3:267–277

    CAS  Google Scholar 

  67. Murray RZ, Wylie FG, Khromykh T, Hume DA, Stow JL (2005) Syntaxin 6 and Vti1b form a novel SNARE complex which is up-regulated in activated macrophages to facilitate exocytosis of tumour necrosis factor-α. J Biol Chem 280:10478–10483

    Article  CAS  Google Scholar 

  68. Kay JG, Murray RZ, Pagan JK, Stow JL (2006) Cytokine secretion via cholesterol-rich lipid raft-associated SNAREs at the phagocytic cup. J Biol Chem 281:11949–11954

    Article  CAS  Google Scholar 

  69. Sanderfoot AA, Assaad FF, Raikhel NV (2000) The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol 124:1558–1569

    Article  CAS  Google Scholar 

  70. Sanderfoot A (2007) Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol 144:6–17

    Article  CAS  Google Scholar 

  71. Kalde M, Nühse TS, Findlay K, Peck SC (2007) The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc Natl Acad Sci USA 104:11850–11855

    Article  CAS  Google Scholar 

  72. Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  CAS  Google Scholar 

  73. Kwon C, Bednarek P, Schulze-Lefert P (2008) Secretory pathways in plant immune responses. Plant Physiol 147:1575–1583

    Article  CAS  Google Scholar 

  74. Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, El Kasmi F, Jürgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P (2008) Co-option of a default secretory pathway for plant immune responses. Nature 451:835–840

    Article  CAS  Google Scholar 

  75. Robatzek S, Bittel P, Chinchilla D, Kîchner P, Felix G, Shiu SH, Boller T (2007) Molecular identification and characterization of the tomato flagellin LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol 64:539–547

    Article  CAS  Google Scholar 

  76. Gross A, Kapp D, Nielsen T, Niehaus K (2005) Endocytosis of Xathomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of N. benthamiana. New Phytol 165:215–226

    Article  CAS  Google Scholar 

  77. Zeidler D, Dubery IA, Schmitt-Kopplin P, Von Rad U, Durner J (2010) Lipopolysaccharide mobility in leaf tissue of Arabidopsis thaliana. Mol Plant Pathol 11:747–755

    CAS  Google Scholar 

  78. Husebye H, Halaas Ø, Stenmark H, Tunheim G, Sandanger Ø, Bogen B, Brech A, Latz E, Espevik T (2006) Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J 25:683–692

    Article  CAS  Google Scholar 

  79. Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20:537–542

    Article  CAS  Google Scholar 

  80. Aslam SN, Newman MA, Erbs G, Morrissey KL, Chinchilla D, Boller T, Jensen TT, De Castro C, Ierano T, Molinaro A, Jackson RW, Knight MR, Cooper RM (2008) Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr Biol 18:1078–1083

    Article  CAS  Google Scholar 

  81. Rigano LA, Payette C, Brouillard G, Marano MR, Abramowicz L, Torres PS, Yun M, Castagnaro AP, El Oirdi M, Dufour V, Malamud F, Dow JM, Bouarab K, Vojnov A (2007) A bacterial cyclic β-1,2 glucan acts in systemic suppression of plant immune responses. Plant Cell 19:2077–2089

    Article  CAS  Google Scholar 

  82. Yun MH, Torres PS, El Oirdi M, Rigano LA, Gonzalez-Lamothe R, Marano MR, Castagnaro AP, Dankert MA, Bouarab K, Vojnov AA (2006) Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol 141:178–187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge funding by The Danish Council for Independent Research, Technology and Production Sciences (FTP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari-Anne Newman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Erbs, G., Newman, MA. (2011). Lipopolysaccharide and Its Interactions with Plants. In: Knirel, Y., Valvano, M. (eds) Bacterial Lipopolysaccharides. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0733-1_14

Download citation

Publish with us

Policies and ethics