Skip to main content

Deposition, Milling, and Etching with a Focused Helium Ion Beam

  • Chapter
  • First Online:
Nanofabrication

Abstract

The recent successful development of the helium ion microscope has produced both a new type of microscopy and a new tool for nanoscale manufacturing. This chapter reviews the first explorations in this new field in nanofabrication. The studies that utilize the Orion helium ion microscope to grow or remove material are described, concentrating on helium ion beam deposition, milling, and etching. Helium ion beam induced deposition combines the advantage of electron beam deposition, namely high spatial resolution, with that of heavy-ion beam induced deposition, namely high efficiency. Helium milling is much slower than gallium milling, but ideal for structuring thin slabs of material with high precision. A handful of studies has demonstrated the possibility of helium ion beam etching. Experimental and theoretical studies suggest that secondary electron emission is the dominant mechanism in helium ion beam induced processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The data points were divided by the average Pt content; hence, the corrected data points scatter around the original ones.

References

  1. Dubner AD, Wagner A, Melngailis J, Thompson CV. J Appl Phys. 1991;70:665–73.

    Article  CAS  Google Scholar 

  2. Ward BW, Notte JA, Economou NP. J Vac Sci Technol B. 2006;24:2871–4.

    Article  CAS  Google Scholar 

  3. Morgan J, Notte J, Hill R, Ward B. Microsc Today. 2006;14(4):24–31.

    CAS  Google Scholar 

  4. Sanford CA, Stern L, Barriss L, Farkas L, DiManna M, Mello R, Maas DJ, Alkemade PFA. J Vac Sci Technol B. 2009;27:2660–7.

    Article  CAS  Google Scholar 

  5. Hill R, Faridur Rahman FHM. Nucl Instr Meth A. Nucl Instr Meth A. 2011;645:96–101.

    Google Scholar 

  6. Alkemade PFA, Chen P, van Veldhoven E, Maas D. J Vac Sci Technol B. 2010;28:C6F22–5.

    Article  CAS  Google Scholar 

  7. Chen P, van Veldhoven E, Sanford CA, Salemink HWM, Maas DJ, Smith DA, Rack PD, Alkemade PFA. Nanotechnology. 2010;21:455302. 7 pp.

    Article  Google Scholar 

  8. Maas D, van Veldhoven E, Chen P, Sidorkin V, Salemink H, van der Drift E, Alkemade P. Proc SPIE. 2010;7638:763814. 10 pp.

    Article  Google Scholar 

  9. Boden SA, Moktadir Z, Bagnall DM, Mizuta H, Rutt HN. Microelectron Eng. Microelectron Eng. 2011;88:2452–5.

    Google Scholar 

  10. Pickard D, Scipioni L. Graphene nano-ribbon patterning in the orion plus (Zeiss Application Note, Oct 2009).

    Google Scholar 

  11. Bell DC, Lemme MC, Stern LA, Marcus CM. J Vac Sci Technol B. 2009;27:2755–8.

    Article  CAS  Google Scholar 

  12. Scipioni L, Ferranti DC, Smentkowski VS, Potyrailo RA. J Vac Sci Technol B. 2010;28:C6P18–23.

    Article  CAS  Google Scholar 

  13. Rudneva MI, van Veldhoven E, Shu MS, Maas D, Zandbergen HW. Abstract 17th international microscopy conference, Rio de Janeiro; 2010.

    Google Scholar 

  14. Randolph SJ, Fowlkes JD, Rack PD. Crit Rev Solid State Mater Sci. 2006;31:55–89.

    Article  CAS  Google Scholar 

  15. Utke I, Hoffmann P, Melngailis J. J Vac Sci Technol B. 2008;26:1197–276.

    Article  CAS  Google Scholar 

  16. van Dorp WF, Hagen CW. J Appl Phys. 2008;104:081301. 42 pp.

    Article  Google Scholar 

  17. Rabalais JW. Principles and applications of ion scattering spectrometry. New York: Wiley-Interscience; 2003.

    Google Scholar 

  18. Livengood R, Tan S, Greenzweig Y, Notte J, McVey S. J Vac Sci Technol B. 2009;27:3244–9.

    Article  CAS  Google Scholar 

  19. Castaldo V, Hagen CW, Kruit P, van Veldhoven E, Maas D. J Vac Sci Technol B. 2009;27:3196–202.

    Article  CAS  Google Scholar 

  20. Eckstein W, Behrisch R, editors. ‘Sputtering yields’ in sputtering by particle bombardment. Berlin: Springer; 2007.

    Google Scholar 

  21. Chen P, Salemink HWM, Alkemade PFA. J Vac Sci Technol B. 2009;27:2718–21.

    Article  CAS  Google Scholar 

  22. Silvis-Cividjian N, Hagen CW, Teunissen LH, Kruit P. Microelectron Eng. 2002;61–62:693–9.

    Article  Google Scholar 

  23. Fowlkes JD, Randolph SJ, Rack PD. J Vac Sci Technol B. 2005;23:2825–32.

    Article  CAS  Google Scholar 

  24. Smith DA, Joy DC, Rack PD. Nanotechnology. 2010;21:175302. 7 pp.

    Article  Google Scholar 

  25. van Dorp WF, van Someren B, Hagen CW, Kruit P, Crozier PA. Nano Lett. 2005;5:1303–7.

    Article  Google Scholar 

  26. Chen P. PhD thesis, Delft University of Technology; 2010.

    Google Scholar 

  27. Chen P, Salemink HWM, Alkemade PFA. J Vac Sci Technol B. 2009;27:1838–43.

    Article  CAS  Google Scholar 

  28. Scipioni L, Sanford C, van Veldhoven E, Maas D. Microsc Today. 2011;19(3):22–6.

    Article  Google Scholar 

  29. Botman A, Mulders JJL, Weemaes R, Mentink S. Nanotechnology. 2006;17:3779–85.

    Article  CAS  Google Scholar 

  30. Winters HF, Coburn JW. Appl Phys Lett. 1979;34:70–3.

    Article  CAS  Google Scholar 

  31. Flamm DL, Donnelly VM. Plasma Chem Plasma Process. 1981;1:317–63.

    Article  CAS  Google Scholar 

  32. Lobo CJ, Toth M, Wagner R, Thiel BL, Lysaght M. Nanotechnology. 2008;19:025303. 6 pp.

    Article  Google Scholar 

  33. Livengood RH, Tan S, Hallstein R, Notte J, McVey S, Faridur Rahman FHM. Nucl Instr Meth A. 2011;645:136–40.

    Google Scholar 

Download references

Acknowledgements

This research is part of NanoNed, a national research program on nanotechnology, funded by the Dutch ministry of Economic Affairs in the Netherlands. Our colleagues P. Chen, E. van der Drift, H. Salemink from Delft University of Technology and D. Maas from TNO are gratefully acknowledged for their contributions and discussions. The authors acknowledge L. Scipioni, S. Boden, R. Hill, R. Livengood, S. Tan, I. Utke, C. Sanford, M. Rudneva, and F. Tichelaar for giving permission to use their figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. A. Alkemade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Alkemade, P.F.A., van Veldhoven, E. (2012). Deposition, Milling, and Etching with a Focused Helium Ion Beam. In: Stepanova, M., Dew, S. (eds) Nanofabrication. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0424-8_11

Download citation

Publish with us

Policies and ethics