Skip to main content

Synchronization of Cellular Contractions in the Arteriolar Wall

  • Chapter
  • First Online:
Biosimulation in Biomedical Research, Health Care and Drug Development

Abstract

With few exceptions all tissues in the mammalian body are invested by a highly branched microcirculatory network. The microcirculation serves to bring the blood into close contact with every part of the tissue. In this way the exchange between blood and tissue of oxygen, nutrients, metabolic bi-products, etc. can be bridged efficiently by diffusion. Like most other hollow structures in the body, the wall of arterioles and small muscular arteries (resistance vessels) are invested with a specific kind of contractile cell known as the smooth muscle cell(SMC). The SMC is long and spindle shaped. Under the microscope its interior does not appear as highly organized as, for instance, the cells of skeletal muscle tissue. In the latter kind of cells the structure of the contractile machinery can be directly observed, but this is not the case for the SMC. In addition, contraction or relaxation of the SMC is involuntary, i.e. we cannot control it by will. For a number of reasons, however, the contractile characteristics of the SMC make it well suited to participate in the regulation of our internal milieu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aalkjaer C, Danielsen H, Johannesen P, Pedersen EB, Rasmussen A, Mulvany MJ (1985) Abnormal vascular function and morphology in pre-eclampsia: a study of isolated resistance vessels. Clin Sci (Lond) 69:477–482

    CAS  Google Scholar 

  2. Boegehold MA (1993) Enhanced arteriolar vasomotion in rats with chronic salt-induced hypertension. Microvasc Res 45:83–94

    Article  PubMed  CAS  Google Scholar 

  3. Bolton TB, Gordienko DV (1998) Calcium homeostasis - Confocal imaging of calcium release events in single smooth muscle cells. Acta Physiol Scand 164:567–575

    Article  PubMed  CAS  Google Scholar 

  4. Bouskela E, Grampp W (1992) Spontaneous vasomotion in hamster cheek pouch arterioles in varying experimental conditions. Am J Physiol 262:H478–H485

    PubMed  CAS  Google Scholar 

  5. Bouskela E, Wiederhielm CA (1979) Microvascular myogenic reaction in the wing of the intact unanesthetized bat 3. Am J Physiol 237:H59–H65

    PubMed  CAS  Google Scholar 

  6. Colantuoni A, Bertuglia S, Intaglietta M (1984) Quantitation of rhythmic diameter changes in arterial microcirculation. Am J Physiol 246:H508–H517

    PubMed  CAS  Google Scholar 

  7. Colantuoni A, Bertuglia S, Intaglietta M (1984) The effects of alpha- or beta-adrenergic receptor agonists and antagonists and calcium entry blockers on the spontaneous vasomotion. Microvasc Res 28:143–158

    Article  PubMed  CAS  Google Scholar 

  8. D’Agrosa LS (1970) Patterns of venous vasomotion in the bat wing. Am J Physiol 218: 530–535

    PubMed  Google Scholar 

  9. De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2 + concentration. Proc Natl Acad Sci USA 89:9895–9899

    Article  PubMed  Google Scholar 

  10. Fujii K, Heistad DD, Faraci FM (1990) Vasomotion of basilar arteries in vivo. Am J Physiol 258:H1829–H1834

    PubMed  CAS  Google Scholar 

  11. Gustafsson H, Bulow A, Nilsson H (1994) Rhythmic contractions of isolated, pressurized small arteries from rat. Acta Physiol Scand 152:145–152

    Article  PubMed  CAS  Google Scholar 

  12. Gustafsson H, Mulvany MJ, Nilsson H (1993) Rhythmic contractions of isolated small arteries from rat: influence of the endothelium. Acta Physiol Scand 148:153–163

    Article  PubMed  CAS  Google Scholar 

  13. Gustafsson H, Nilsson H (1993) Rhythmic contractions of isolated small arteries from rat: role of calcium. Acta Physiol Scand 149:283–291

    Article  PubMed  CAS  Google Scholar 

  14. Imtiaz MS, Smith DW, van Helden DF (2002) A theoretical model of slow wave regulation using voltage-dependent synthesis of inositol 1,4,5-trisphosphate. Biophys J 83:1877–1890

    Article  PubMed  CAS  Google Scholar 

  15. Intaglietta M (1991) Arteriolar vasomotion: implications for tissue ischemia. Blood Vessels 28 Suppl 1:1–7

    PubMed  Google Scholar 

  16. Jacobsen JC, Aalkjaer C, Matchkov VV, Nilsson H, Freiberg JJ, Holstein-Rathlou NH (2008) Heterogeneity and weak coupling may explain the synchronization characteristics of cells in the arterial wall. Philos Transact A Math Phys Eng Sci 366:3483–3502

    Article  PubMed  Google Scholar 

  17. Jacobsen JC, Aalkjaer C, Nilsson H, Matchkov VV, Freiberg J, Holstein-Rathlou NH (2007) A model of smooth muscle cell synchronization in the arterial wall. Am J Physiol Heart Circ Physiol 293:H229–H237

    Article  PubMed  CAS  Google Scholar 

  18. Jacobsen JC, Aalkjaer C, Nilsson H, Matchkov VV, Freiberg J, Holstein-Rathlou NH (2007) Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole cell oscillations in smooth muscle cells. Am J Physiol Heart Circ Physiol 293:H215–H228

    Article  PubMed  CAS  Google Scholar 

  19. Knot HJ, Standen NB, Nelson MT (1998) Ryanodine receptors regulate arterial wall [Ca2+] and diameter in cerebral arteries of rat via KCa channels. J Physiol 508:1:211–221

    Article  PubMed  CAS  Google Scholar 

  20. Koenigsberger M, Sauser R, Lamboley M, Beny JL, Meister JJ (2004) Ca2 + dynamics in a population of smooth muscle cells: modeling the recruitment and synchronization. Biophys J 87:92–104

    Article  PubMed  CAS  Google Scholar 

  21. Koenigsberger M, Sauser R, Meister JJ (2005) Emergent properties of electrically coupled smooth muscle cells. Bull Math Biol 67:1253–1272

    Article  PubMed  CAS  Google Scholar 

  22. Laugesen JL, Mosekilde E, Holstein-Rathlou N-H (2011) C-type period-doubling transition in nephron autoregulation. Interface Focus 1:132–142

    Article  PubMed  Google Scholar 

  23. le Noble JL, Smith TL, Hutchins PM, Struyker-Boudier HA (1990) Microvascular alterations in adult conscious spontaneously hypertensive rats. Hypertension 15:415–419

    Article  PubMed  Google Scholar 

  24. Lee CH, Kuo KH, Dai J, van Breemen C (2005) Asynchronous calcium waves in smooth muscle cells. Can J Physiol Pharmacol 83:733–741

    Article  PubMed  CAS  Google Scholar 

  25. Lefer DJ, Lynch CD, Lapinski KC, Hutchins PM (1990) Enhanced vasomotion of cerebral arterioles in spontaneously hypertensive rats. Microvasc Res 39:129–139

    Article  PubMed  CAS  Google Scholar 

  26. Messmer K (1983) Vasomotion and Quantitative Capillaroscopy. Karger, Basel

    Google Scholar 

  27. Meyer JU, Lindbom L, Intaglietta M (1987) Coordinated diameter oscillations at arteriolar bifurcations in skeletal muscle. Am J Physiol 253:H568–H573

    PubMed  CAS  Google Scholar 

  28. Oishi H, Schuster A, Lamboley M, Stergiopulos N, Meister JJ, Beny JL (2002) Role of membrane potential in vasomotion of isolated pressurized rat arteries. Life Sci 71:2239–2248

    Article  PubMed  CAS  Google Scholar 

  29. Osol G, Halpern W (1988) Spontaneous vasomotion in pressurized cerebral arteries from genetically hypertensive rats. Am J Physiol 254:H28–H33

    Google Scholar 

  30. Peng H, Matchkov V, Ivarsen A, Aalkjaer C, Nilsson H (2001) Hypothesis for the initiation of vasomotion. Circ Res 88:810–815

    Article  PubMed  CAS  Google Scholar 

  31. Rahman A, Matchkov V, Nilsson H, Aalkjaer C (2005) Effects of cGMP on coordination of vascular smooth muscle cells of rat mesenteric small arteries. J Vasc Res 42:301–311

    Article  PubMed  CAS  Google Scholar 

  32. Rucker M, Strobel O, Vollmar B, Roesken F, Menger MD (2000) Vasomotion in critically perfused muscle protects adjacent tissues from capillary perfusion failure. Am J Physiol Heart Circ Physiol 279:H550–H558

    PubMed  CAS  Google Scholar 

  33. Sosnovtseva O, Pavlov A, Mosekilde E, Holstein-Rathlou N-H (2002) Bimodal oscillations in nephron autoregulation. Phys Rev E 66:6:61909-1-7

    Google Scholar 

  34. Sosnovtseva O, Pavlov A, Mosekilde E, Holstein-Rathlou N-H, Marsh DJ (2004) Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation. Physical Review E 70:031915-1-031915-8

    Google Scholar 

  35. Ursino M, Cavalcanti S, Bertuglia S, Colantuoni A (1996) Theoretical analysis of complex oscillations in multibranched microvascular networks. Microvasc Res 51:229–249

    Article  PubMed  CAS  Google Scholar 

  36. Ursino M, Fabbri G (1992) Role of the myogenic mechanism in the genesis of microvascular oscillations (vasomotion): analysis with a mathematical model. Microvasc Res 43:156–177

    Article  PubMed  CAS  Google Scholar 

  37. Ursino M, Fabbri G, Belardinelli E (1992) A mathematical analysis of vasomotion in the peripheral vascular bed. Cardioscience 3:13–25

    PubMed  CAS  Google Scholar 

  38. van Helden DF, Zhao J (2000) Lymphatic vasomotion. Clin Exp Pharmacol Physiol 27: 1014–1018

    Article  PubMed  Google Scholar 

  39. Zhao J, van Helden DF (2002) ATP-induced endothelium-independent enhancement of lymphatic vasomotion in guinea-pig mesentery involves P2X and P2Y receptors. Br J Pharmacol 137:477–487

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens C. B. Jacobsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Jacobsen, J.C.B., Hald, B.O., Brasen, J.C., Holstein-Rathlou, NH. (2011). Synchronization of Cellular Contractions in the Arteriolar Wall. In: Mosekilde, E., Sosnovtseva, O., Rostami-Hodjegan, A. (eds) Biosimulation in Biomedical Research, Health Care and Drug Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0418-7_10

Download citation

Publish with us

Policies and ethics