Skip to main content

The Functional Neuroanatomy of the Limbic System

  • Chapter
  • First Online:
Psychoneuroscience
  • 836 Accesses

Abstract

In this chapter, we will review the anatomical components of the limbic system and its basic functions. The main structures of the brain will be presented in their morphology and neurochemistry as well as the connections of the limbic structures to each other and their links with motor and sensory-cognitive brain regions. The aim is to get to know the main functions of the respective limbic region, but also the overlapping and complementary functions with other limbic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolphs R, Spezio M (2006) Role of the amygdala in processing visual social stimuli. Prog Brain Res 156:363–378

    Article  PubMed  Google Scholar 

  • Aggleton JP (2012) Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function. Neurosci Biobehav Rev 36:1579–1596

    Article  PubMed  Google Scholar 

  • Aggleton JP, Mishkin M (1984) Projections of the amygdala to the thalamus in the cynomolgus monkey. J Comp Neurol 222:56–68

    Article  CAS  PubMed  Google Scholar 

  • Aggleton JP, Burton MJ, Passingham RE (1980) Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res 190:347–368

    Article  CAS  PubMed  Google Scholar 

  • Aggleton JP, Wright NF, Vann SD, Saunders RC (2012) Medial temporal lobe projections to the retrosplenial cortex of the macaque monkey. Hippocampus 22:1883–1900

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  CAS  PubMed  Google Scholar 

  • Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Bolado G (2019) Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res 375:23–39

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Insausti R (1992) Retrograde transport of D-[3H]-aspartate injected into the monkey amygdaloid complex. Exp Brain Res 88:375–388

    Article  CAS  PubMed  Google Scholar 

  • Amaral D, Lavenex P (2006) Hippocampal neuroanatomy. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The hippocampus book. Oxford University Press, New York, pp 37–114

    Google Scholar 

  • Amaral DG, Price JL (1984) Amygdalo-cortical projections in the monkey (Macaca fascicularis). J Comp Neurol 230:465–496

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Veazey RB, Cowan WM (1982) Some observations on hypothalamo-amygdaloid connections in the monkey. Brain Res 252:13–27

    Article  CAS  PubMed  Google Scholar 

  • Amiez C, Petrides M (2014) Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. Cereb Cortex 24:563–578

    Article  PubMed  Google Scholar 

  • An X, Bandler R, Öngür D, Price JL (1998) Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J Comp Neurol 401:455–479

    Article  CAS  PubMed  Google Scholar 

  • Andermann ML, Lowell BB (2017) Toward a wiring diagram understanding of appetite control. Neuron 95:757–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angeles Fernández-Gil M, Palacios-Bote R, Leo-Barahona M, Mora-Encinas JP (2010) Anatomy of the brainstem: a gaze into the stem of life. Semin Ultrasound CT MR 31:196–219

    Article  PubMed  Google Scholar 

  • Aoki C, Venkatesan C, Go CG, Forman R, Kurose H (1998) Cellular and subcellular sites for noradrenergic action in the monkey dorsolateral prefrontal cortex as revealed by the immunocytochemical localization of noradrenergic receptors and axons. Cereb Cortex 8:269–277

    Article  CAS  PubMed  Google Scholar 

  • Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22:229–244

    Article  CAS  PubMed  Google Scholar 

  • Ballinger EC, Ananth M, Talmage DA, Role LW (2016) Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91:1199–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17:379–389

    Article  CAS  PubMed  Google Scholar 

  • Barbas H (1993) Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey. Neuroscience 56:841–864

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, De Olmos J (1990) Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol 300:549–571

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286:353–375

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, Ghashghaei H, Dombrowski SM, Rempel-Clower NL (1999) Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J Comp Neurol 410:343–367

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, Saha S, Rempel-Clower N, Ghashghaei T (2003) Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci 10(4):25

    Article  Google Scholar 

  • Barbosa DAN, de Oliveira-Souza R, Monte Santo F, de Oliveira Faria AC, Gorgulho AA, De Salles AAF (2017) The hypothalamus at the crossroads of psychopathology and neurosurgery. Neurosurg Focus 43:E15

    Article  PubMed  Google Scholar 

  • Basar K, Sesia T, Groenewegen H, Steinbusch HW, Visser-Vandewalle V, Temel Y (2010) Nucleus accumbens and impulsivity. Prog Neurobiol 92:533–557

    Article  PubMed  Google Scholar 

  • Bear MH, Bollu PC (2018) Neuroanatomy, hypothalamus. In: StatPearls. StatPearls Publishing, Treasure Island, FL

    Google Scholar 

  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14:21–27

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt BC, Singer T (2012) The neural basis of empathy. Annu Rev Neurosci 35:1–23

    Article  CAS  PubMed  Google Scholar 

  • Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84

    Article  PubMed  Google Scholar 

  • Berridge KC, Kringelbach ML (2013) Neuroscience of affect: brain mechanisms of pleasure and displeasure. Curr Opin Neurobiol 23:294–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge KC, Kringelbach ML (2015) Pleasure systems in the brain. Neuron 86:646–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botvinick MM (2007) Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cogn Affect Behav Neurosci 7:356–366

    Article  PubMed  Google Scholar 

  • Brauer K, Häusser M, Härtig W, Arendt T (2000) The core-shell dichotomy of nucleus accumbens in the rhesus monkey as revealed by double-immunofluorescence and morphology of cholinergic interneurons. Brain Res 858:151–162

    Article  CAS  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Johann Ambrosius Barth, Leipzig

    Google Scholar 

  • Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks JC, Zambreanu L, Godinez A, Craig AD, Tracey I (2005) Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. NeuroImage 27:201–209

    Article  CAS  PubMed  Google Scholar 

  • Büchel C, Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C (2002) Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 22:970–976

    Article  PubMed  PubMed Central  Google Scholar 

  • Buot A, Yelnik J (2012) Functional anatomy of the basal ganglia: limbic aspects. Rev Neurol (Paris) 168:569–575

    Article  CAS  PubMed  Google Scholar 

  • Burgess PW, Gilbert SJ, Dumontheil I (2007) Function and localization within rostral prefrontal cortex (area 10). Philos Trans R Soc Lond Ser B Biol Sci 362:887–899

    Article  Google Scholar 

  • Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222

    Article  CAS  PubMed  Google Scholar 

  • Carmichael ST, Price JL (1995a) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641

    Article  CAS  PubMed  Google Scholar 

  • Carmichael ST, Price JL (1995b) Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 363:642–664

    Article  CAS  PubMed  Google Scholar 

  • Carmichael ST, Price JL (1996) Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 371:179–207

    Article  CAS  PubMed  Google Scholar 

  • Carrive P, Morgan MM (2012) Periaqueductal gray. In: Mai JK, Paxinos G (eds) The human nervous system. Academic, London, pp 367–400

    Chapter  Google Scholar 

  • Carus-Cadavieco M, Gorbati M, Ye L, Bender F, van der Veldt S, Kosse C, Börgers C, Lee SY, Ramakrishnan C, Hu Y, Denisova N, Ramm F, Volitaki E, Burdakov D, Deisseroth K, Ponomarenko A, Korotkova T (2017) Gamma oscillations organize top-down signalling to hypothalamus and enable food seeking. Nature 542:232–236

    Article  CAS  PubMed  Google Scholar 

  • Cassel JC, Pereira de Vasconcelos A, Loureiro M, Cholvin T, Dalrymple-Alford JC, Vertes RP (2013) The reuniens and rhomboid nuclei: neuroanatomy, electrophysiological characteristics and behavioral implications. Prog Neurobiol 111:34–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro DC, Chesterman NS, Wu MKH, Berridge KC (2014) Two cortical hedonic hotspots: orbitofrontal and insular sites of sucrose ‘liking’ enhancement. In: Society for neuroscience conference, Washington, DC

    Google Scholar 

  • Cauda F, D’Agata F, Sacco K, Duca S, Geminiani G, Vercelli A (2011) Functional connectivity of the insula in the resting brain. NeuroImage 55:8–23

    Article  PubMed  Google Scholar 

  • Cavada C, Compañy T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suárez F (2000) The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10:220–242

    Article  CAS  PubMed  Google Scholar 

  • Challis C, Berton O (2015) Top-down control of serotonin systems by the prefrontal cortex: a path toward restored socioemotional function in depression. ACS Chem Neurosci 6:1040–1054

    Article  CAS  PubMed  Google Scholar 

  • Chikama M, McFarland NR, Amaral DG, Haber SN (1997) Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 17:9686–9705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho YT, Ernst M, Fudge JL (2013) Cortico-amygdala-striatal circuits are organized as hierarchical subsystems through the primate amygdala. J Neurosci 33:14017–14030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colavito V, Tesoriero C, Wirtu AT, Grassi-Zucconi G, Bentivoglio M (2015) Limbic thalamus and state-dependent behavior: the paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks. Neurosci Biobehav Rev 54:3–17

    Article  PubMed  Google Scholar 

  • Correia SS, Goosens KA (2016) Input-specific contributions to valence processing in the amygdala. Learn Mem 23:534–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulombe MA, Erpelding N, Kucyi A, Davis KD (2016) Intrinsic functional connectivity of periaqueductal gray subregions in humans. Hum Brain Mapp 37:1514–1530

    Article  PubMed  PubMed Central  Google Scholar 

  • Counts SE, Mufson EJ (2012) Locus coeruleus. In: Mai JK, Paxinos G (eds) The human nervous system. Academic, London, pp 425–438

    Chapter  Google Scholar 

  • Coveñas R, Martin F, Belda M, Smith V, Salinas P, Rivada E, Diaz-Cabiale Z, Narvaez JA, Marcos P, Tramu G, Gonzalez-Baron S (2003) Mapping of neurokinin-like immunoreactivity in the human brainstem. BMC Neurosci 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Craig AD (2010) The sentient self. Brain Struct Funct 214:563–577

    Article  PubMed  Google Scholar 

  • Craig AD, Zhang ET (2006) Retrograde analyses of spinothalamic projections in the macaque monkey: input to posterolateral thalamus. J Comp Neurol 499:953–964

    Article  PubMed  Google Scholar 

  • Da Cunha C, Gomez-A A, Blaha CD (2012) The role of the basal ganglia in motivated behavior. Rev Neurosci 23:747–767

    Article  PubMed  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 62:1–55

    Google Scholar 

  • Damasio AR (1994) Descartes’ Irrtum. Fühlen, Denken und das menschliche Gehirn. Paul List Verlag, München

    Google Scholar 

  • Decety J, Michalska KJ (2010) Neurodevelopmental changes in the circuits underlying empathy and sympathy from childhood to adulthood. Dev Sci 13:886–899

    Article  PubMed  Google Scholar 

  • Ding SL (2013) Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent. J Comp Neurol 521:4145–4162

    Article  PubMed  Google Scholar 

  • Ding SL, Haber SN, Van Hoesen GW (2010) Stratum radiatum of CA2 is an additional target of the perforant path in humans and monkeys. Neuroreport 21:245–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding SL, Royall JJ, Sunkin SM, Ng L, Facer BA, Lesnar P, Guillozet-Bongaarts A, McMurray B, Szafer A, Dolbeare TA, Stevens A, Tirrell L, Benner T, Caldejon S, Dalley RA, Dee N, Lau C, Nyhus J, Reding M, Riley ZL, Sandman D, Shen E, van der Kouwe A, Varjabedian A, Wright M, Zöllei L, Dang C, Knowles JA, Koch C, Phillips JW, Sestan N, Wohnoutka P, Zielke HR, Hohmann JG, Jones AR, Bernard A, Hawrylycz MJ, Hof PR, Fischl B, Lein ES (2016) Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol 524:3127–3481

    Article  PubMed  PubMed Central  Google Scholar 

  • Double KL, Dedov VN, Fedorow H, Kettle E, Halliday GM, Garner B, Brunk UT (2008) The comparative biology of neuromelanin and lipofuscin in the human brain. Cell Mol Life Sci 65:1669–1682

    Article  CAS  PubMed  Google Scholar 

  • Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dum RP, Levinthal DJ, Strick PL (2009) The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J Neurosci 29:14223–14235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eblen F, Graybiel AM (1995) Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 15:5999–6013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fellows LK (2011) Orbitofrontal contributions to value-based decision making: evidence from humans with frontal lobe damage. Ann N Y Acad Sci 1239:51–58

    Article  PubMed  Google Scholar 

  • Ferrario CR, Labouèbe G, Liu S, Nieh EH, Routh VH, Xu S, O’Connor EC (2016) Homeostasis meets motivation in the battle to control food intake. J Neurosci 36:11469–11481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Förstl H, Levy R, Burns A, Luthert P, Cairns N (1994) Disproportionate loss of noradrenergic and cholinergic neurons as cause of depression in Alzheimer’s disease—a hypothesis. Pharmacopsychiatry 27:11–15

    Article  PubMed  Google Scholar 

  • Freese JL, Amaral DG (2005) The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. J Comp Neurol 486:295–317

    Article  PubMed  Google Scholar 

  • Freese JL, Amaral DG (2009) Neuroanatomy of the primate amygdala. In: Whalen PJ, Phelps EA (eds) The human amygdala. The Guilford Press, New York, pp 3–42

    Google Scholar 

  • Fregosi M, Contestabile A, Hamadjida A, Rouiller EM (2017) Corticobulbar projections from distinct motor cortical areas to the reticular formation in macaque monkeys. Eur J Neurosci 45:1379–1395

    Article  PubMed  Google Scholar 

  • Friedman DP, Murray EA, O’Neill JB, Mishkin M (1986) Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J Comp Neurol 252:323–347

    Article  CAS  PubMed  Google Scholar 

  • Friedman DP, Aggleton JP, Saunders RC (2002) Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain. J Comp Neurol 450:345–365

    Article  PubMed  Google Scholar 

  • Frotscher M, Léránth C (1985) Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J Comp Neurol 239:237–246

    Article  CAS  PubMed  Google Scholar 

  • Fudge JL, Breitbart MA, Danish M, Pannoni V (2005) Insular and gustatory inputs to the caudal ventral striatum in primates. J Comp Neurol 490:101–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuller PM, Gooley JJ, Saper CB (2006) Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythm 21:482–493

    Article  CAS  Google Scholar 

  • García-Cabezas MÁ, Barbas H (2017) Anterior cingulate pathways may affect emotions through orbitofrontal cortex. Cereb Cortex 27:4891–4910

    PubMed  Google Scholar 

  • Ghashghaei HT, Barbas H (2002) Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115:1261–1279

    Article  CAS  PubMed  Google Scholar 

  • Ghashghaei HT, Hilgetag CC, Barbas H (2007) Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage 34:905–923

    Article  CAS  PubMed  Google Scholar 

  • Ghaziri J, Tucholka A, Girard G, Houde JC, Boucher O, Gilbert G, Descoteaux M, Lippé S, Rainville P, Nguyen DK (2017) The corticocortical structural connectivity of the human insula. Cereb Cortex 27:1216–1228

    Article  PubMed  Google Scholar 

  • Gottfried JA, O’Doherty J, Dolan RJ (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301:1104–1107

    Article  CAS  PubMed  Google Scholar 

  • Grabenhorst F, Rolls ET (2011) Value, pleasure and choice in the ventral prefrontal cortex. Trends Cog Sci 15:56–67

    Article  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci U S A 75:5723–5726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groenewegen HJ, Witter MP (2004) Thalamus. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, pp 408–441

    Google Scholar 

  • Guillery RW, Harting JK (2003) Structure and connections of the thalamic reticular nucleus: advancing views over half a century. J Comp Neurol 463:360–371

    Article  CAS  PubMed  Google Scholar 

  • Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26

    Article  PubMed  Google Scholar 

  • Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15:4851–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haber SN, Adler A, Bergman H (2012) The basal ganglia. In: Mai JK, Paxinos G (eds) The human nervous system. Academic, London, pp 678–738

    Chapter  Google Scholar 

  • Hackett TA, Stepniewska I, Kaas JH (1999) Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Res 817:45–58

    Article  CAS  PubMed  Google Scholar 

  • Hajszan T, Alreja M, Leranth C (2004) Intrinsic vesicular glutamate transporter 2-immunoreactive input to septohippocampal parvalbumin-containing neurons: novel glutamatergic local circuit cells. Hippocampus 14:499–509

    Article  PubMed  Google Scholar 

  • Halliday G, Reyes S, Double K (2012) Substantia nigra, ventral tegmental area, and retrorubral fields. In: Mai JK, Paxinos G (eds) The human nervous system. Academic, London, pp 439–454

    Chapter  Google Scholar 

  • Hatanaka N, Tokuno H, Hamada I, Inase M, Ito Y, Imanishi M, Hasegawa N, Akazawa T, Nambu A, Takada M (2003) Thalamocortical and intracortical connections of monkey cingulate motor areas. J Comp Neurol 462:121–138

    Article  PubMed  Google Scholar 

  • Hayashi K, Nakao K, Nakamura K (2015) Appetitive and aversive information coding in the primate dorsal raphé nucleus. J Neurosci 35:6195–6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henssen A, Zilles K, Palomero-Gallagher N, Schleicher A, Mohlberg H, Gerboga F, Eickhoff SB, Bludau S, Amunts K (2016) Cytoarchitecture and probability maps of the human medial orbitofrontal cortex. Cortex 75:87–112

    Article  PubMed  Google Scholar 

  • Hermann GE, Holmes GM, Rogers RC, Beattie MS, Bresnahan JC (2003) Descending spinal projections from the rostral gigantocellular reticular nuclei complex. J Comp Neurol 455:210–221

    Article  PubMed  Google Scholar 

  • Hobson JA, Pace-Schott EF (2002) The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat Rev Neurosci 3:679–693

    Article  CAS  PubMed  Google Scholar 

  • Holt DJ, Graybiel AM, Saper CB (1997) Neurochemical architecture of the human striatum. J Comp Neurol 384:1–25

    Article  CAS  PubMed  Google Scholar 

  • Hornung JP (2012) Raphe Nuclei. In: Mai JK, Paxinos G (eds) The human nervous system. Academic, London, pp 401–424

    Chapter  Google Scholar 

  • Hsu DT, Price JL (2007) Midline and intralaminar thalamic connections with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 504:89–111

    Article  PubMed  Google Scholar 

  • Hsu DT, Price JL (2009) Paraventricular thalamic nucleus: subcortical connections and innervation by serotonin, orexin, and corticotropin-releasing hormone in macaque monkeys. J Comp Neurol 512:825–848

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu DT, Kirouac GJ, Zubieta JK, Bhatnagar S (2014) Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood. Front Behav Neurosci 8:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Insausti R, Amaral DG, Cowan WM (1987) The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 264:356–395

    Article  CAS  PubMed  Google Scholar 

  • Jakab RL, Leranth C (1995) Chapter 20—Septum. In: Paxinos G (ed) The rat nervous system, 2. Aufl. Academic, San Diego, pp 405–442

    Google Scholar 

  • Jang S, Kwak S (2017) The upper ascending reticular activating system between intralaminar thalamic nuclei and cerebral cortex in the human brain. J Korean Phys Ther 29:109–114

    Article  Google Scholar 

  • Jang SH, Lim HW, Yeo SS (2014) The neural connectivity of the intralaminar thalamic nuclei in the human brain: a diffusion tensor tractography study. Neurosci Lett 579:140–144

    Article  CAS  PubMed  Google Scholar 

  • Joly-Amado A, Cansell C, Denis RG, Delbes AS, Castel J, Martinez S, Luquet S (2014) The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract Res Clin Endocrinol Metab 28:725–737

    Article  PubMed  Google Scholar 

  • Jones EG (1998) The thalamus of primates. In: Bloom FE, Björklund A, Hökfelt T (eds) The primate nervous system. Part II. Handbook of chemical neuroanatomy, Bd 14. Elsevier, Amsterdam, pp 1–298

    Google Scholar 

  • Kiss J, Patel AJ, Baimbridge KG, Freund TF (1990a) Topographical localization of neurons containing parvalbumin and choline acetyl-transferase in the medial septum-diagonal band region of the rat. Neuroscience 36:61–72

    Article  CAS  PubMed  Google Scholar 

  • Kiss J, Patel AJ, Freund TF (1990b) Distribution of septohippocampal neurons containing parvalbumin or choline acetyltransferase in the rat brain. J Comp Neurol 298:362–372

    Article  CAS  PubMed  Google Scholar 

  • Knox D (2016) The role of basal forebrain cholinergic neurons in fear and extinction memory. Neurobiol Learn Mem 133:39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koelsch S, Jacobs AM, Menninghaus W, Liebal K, Klann-Delius G, von Scheve C, Gebauer G (2015) The quartet theory of human emotions: an integative and neurofunctional model. Phys Life Rev 13:1–17

    Article  PubMed  Google Scholar 

  • Kolada E, Bielski K, Falkiewicz M, Szatkowska I (2017) Functional organization of the human amygdala in appetitive learning. Acta Neurobiol Exp (Wars) 77:118–127

    Article  PubMed  Google Scholar 

  • Kunishio K, Haber SN (1994) Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J Comp Neurol 350:337–356

    Article  CAS  PubMed  Google Scholar 

  • Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214:519–534

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamm C, Singer T (2010) The role of anterior insular cortex in social emotions. Brain Struct Funct 214:579–591

    Article  PubMed  Google Scholar 

  • Lamm C, Decety J, Singer T (2011) Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage 54:2492–2502

    Article  PubMed  Google Scholar 

  • Lebow MA, Chen A (2016) Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry 21:450–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leichnetz GR, Smith DJ, Spencer RF (1984) Cortical projections to the paramedian tegmental and basilar pons in the monkey. J Comp Neurol 228:388–408

    Article  CAS  PubMed  Google Scholar 

  • Liljeholm M, O’Doherty JP (2012) Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cognit Sci 16:467–475

    Article  Google Scholar 

  • Lima D, Almeida A (2002) The medullary dorsal reticular nucleus as a propriociceptive centre of the pain control system. Prog Neurobiol 66:81–108

    Article  PubMed  Google Scholar 

  • Li Y, Vanni-Mercier G, Isnard J, Mauguière F, Dreher JC (2016) The neural dynamics of reward value and risk coding in the human orbitofrontal cortex. Brain 139:1295–1309

    Article  PubMed  Google Scholar 

  • Liu AK, Chang RC, Pearce RK, Gentleman SM (2015) Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol 129:527–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Li Y, Zhong W (2016) Do dorsal raphe 5-HT neurons encode “beneficialness”? Neurobiol Learn Mem 135:40–49

    Article  CAS  PubMed  Google Scholar 

  • Mai JK, Majtanik M, Paxinos G (2016) Atlas of the human brain, 4. Aufl. Academic, London

    Google Scholar 

  • Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2007) Mapping the functional connectivity of anterior cingulate cortex. NeuroImage 37:579–588

    Article  PubMed  Google Scholar 

  • Markowitsch HJ, Emmans D, Irle E, Streicher M, Preilowski B (1985) Cortical and subcortical afferent connections of the primate’s temporal pole: a study of rhesus monkeys, squirrel monkeys, and marmosets. J Comp Neurol 242:425–458

    Article  CAS  PubMed  Google Scholar 

  • McDonald AJ, Mott DD (2017) Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory. J Neurosci Res 95:797–820

    Article  CAS  PubMed  Google Scholar 

  • McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22:8117–8132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKee AC, Cairns NJ, Dickson DW, Folkerth RD, Keene CD, Litvan I, Perl DP, Stein TD, Vonsattel JP, Stewart W, Tripodis Y, Crary JF, Bieniek KF, Dams-O’Connor K, Alvarez VE, Gordon WA, TBI/CTE Group (2016) The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 131:75–86

    Article  CAS  PubMed  Google Scholar 

  • McRitchie DA, Halliday GM, Cartwright H (1995) Quantitative analysis of the variability of substantia nigra cell clusters in the human. Neuroscience 68:539–551

    Article  CAS  PubMed  Google Scholar 

  • Mehler WR (1980) Subcortical afferent connections of the amygdala in the monkey. J Comp Neurol 190:733–762

    Article  CAS  PubMed  Google Scholar 

  • Menon V, Levitin DJ (2005) The rewards of music listening: response and physiological connectivity of the mesolimbic system. NeuroImage 28:175–184

    Article  CAS  PubMed  Google Scholar 

  • Meredith GE, Pattiselanno A, Groenewegen HJ, Haber SN (1996) Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28k. J Comp Neurol 365:628–639

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ (1982a) Insula of the old world monkey. I. Architectonics in the insulo-orbito-temporal component of the paralimbic brain. J Comp Neurol 212:1–22

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ (1982b) Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol 212:38–52

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ (1984) Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 107:253–274

    Article  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ (1985) The insula of Reil in man and monkey. In: Peters A, Jones EG (eds) Association and auditory cortices. Plenum, New York, pp 179–226

    Chapter  Google Scholar 

  • Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197

    Article  CAS  PubMed  Google Scholar 

  • Metzger M, Bueno D, Lima LB (2017) The lateral habenula and the serotonergic system. Pharmacol Biochem Behav 162:22–28

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, DeBold JF, Hwa LS, Newman EL, de Almeida RM (2015) Alcohol and violence: neuropeptidergic modulation of monoamine systems. Ann N Y Acad Sci 1349:96–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra G, Coombes SA (2015) Neuroimaging evidence of motor control and pain processing in the human midcingulate cortex. Cereb Cortex 25:1906–1919

    Article  PubMed  Google Scholar 

  • Mitchell JM, Lowe D, Fields HL (1998) The contribution of the rostral ventromedial medulla to the antinociceptive effects of systemic morphine in restrained and unrestrained rats. Neuroscience 87:123–133

    Article  CAS  PubMed  Google Scholar 

  • Mohedano-Moriano A, Muñoz-López M, Sanz-Arigita E, Pró-Sistiaga P, Martínez-Marcos A, Legidos-Garcia ME, Insausti AM, Cebada-Sánchez S, Arroyo-Jiménez Mdel M, Marcos P, Artacho-Pérula E, Insausti R (2015) Prefrontal cortex afferents to the anterior temporal lobe in the Macaca fascicularis monkey. J Comp Neurol 523:2570–2598

    Article  PubMed  Google Scholar 

  • Moran MA, Mufson EJ, Mesulam MM (1987) Neural inputs into the temporopolar cortex of the rhesus monkey. J Comp Neurol 256:88–103

    Article  CAS  PubMed  Google Scholar 

  • Morecraft RJ, Van Hoesen GW (1993) Frontal granular cortex input to the cingulate (M3), supplementary (M2) and primary (M1) motor cortices in the rhesus monkey. J Comp Neurol 337:669–689

    Article  CAS  PubMed  Google Scholar 

  • Morecraft RJ, Geula C, Mesulam MM (1992) Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol 323:341–358

    Article  CAS  PubMed  Google Scholar 

  • Morecraft RJ, Schroeder CM, Keifer J (1996) Organization of face representation in the cingulate cortex of the rhesus monkey. Neuroreport 7:1343–1348

    Article  CAS  PubMed  Google Scholar 

  • Morecraft RJ, Cipolloni PB, Stilwell-Morecraft KS, Gedney MT, Pandya DN (2004) Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J Comp Neurol 469:37–69

    Article  CAS  PubMed  Google Scholar 

  • Morecraft RJ, McNeal DW, Stilwell-Morecraft KS, Gedney M, Ge J, Schroeder CM, van Hoesen GW (2007) Amygdala interconnections with the cingulate motor cortex in the rhesus monkey. J Comp Neurol 500:134–165

    Article  PubMed  Google Scholar 

  • Mufson EJ, Mesulam MM (1982) Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J Comp Neurol 212:23–37

    Article  CAS  PubMed  Google Scholar 

  • Müller C, Remy S (2018) Septo-hippocampal interaction. Cell Tissue Res 373:565–575

    Article  PubMed  Google Scholar 

  • Muñoz M, Insausti R (2005) Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey (Macaca fascicularis). Eur J Neurosci 22:1368–1388

    Article  PubMed  Google Scholar 

  • Müri RM (2016) Cortical control of facial expression. J Comp Neurol 524:1578–1585

    Article  PubMed  Google Scholar 

  • Mutschler I, Wieckhorst B, Kowalevski S, Derix J, Wentlandt J, Schulze-Bonhage A, Ball T (2009) Functional organization of the human anterior insular cortex. Neurosci Lett 457:66–70

    Article  CAS  PubMed  Google Scholar 

  • Nadel L, Hoscheidt S, Ryan LR (2013) Spatial cognition and the hippocampus: the anterior–posterior axis. J Cognit Neurosci 25:22–28

    Article  Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitecture of the brain. Springer, Berlin

    Book  Google Scholar 

  • Nieuwenhuys R (2012) The insular cortex: a review. Prog Brain Res 195:123–163

    Article  PubMed  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (1988) The human central nervous system. Springer, Berlin

    Book  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (1991) Das Zentralnervensystem des Menschen. Springer, Berlin

    Book  Google Scholar 

  • Nieuwenhuys R, Voogd J, Van Huijzen C (2008) The human central nervous system. Springer, Berlin

    Book  Google Scholar 

  • Oldfield RG, Harris RM, Hofmann HA (2015) Integrating resource defence theory with a neural nonapeptide pathway to explain territory-based mating systems. Front Zool 12(Suppl 1):S16

    Article  PubMed  PubMed Central  Google Scholar 

  • Öngür D, An X, Price JL (1998) Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol 401:480–505

    Article  PubMed  Google Scholar 

  • Ostrowsky K, Magnin M, Ryvlin P, Isnard J, Guenot M, Mauguière F (2002) Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb Cortex 12:376–385

    Article  PubMed  Google Scholar 

  • Pandya DN, Van Hoesen GW, Mesulam MM (1981) Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res 42:319–330

    Article  CAS  PubMed  Google Scholar 

  • Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatr 38:725–743

    Article  Google Scholar 

  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    Article  CAS  PubMed  Google Scholar 

  • Paus T (2000) Functional anatomy of arousal and attention systems in the human brain. Prog Brain Res 126:65–77

    Article  CAS  PubMed  Google Scholar 

  • Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2:417–424

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Xu-Feng H, Sengul G, Watson C (2012) Organization of brainstem nuclei. In: Mai JK, Paxinos G (eds) The human nervous system. Academic, London, pp 260–327

    Chapter  Google Scholar 

  • Pereira de Vasconcelos A, Cassel JC (2015) The nonspecific thalamus: a place in a wedding bed for making memories last? Neurosci Biobehav Rev 54:175–196

    Article  PubMed  Google Scholar 

  • Petrovich GD (2018) Lateral hypothalamus as a motivation-cognition interface in the control of feeding behavior. Front Syst Neurosci 12:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips ML, Drevets WC, Rauch SL, Lane R (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 54:504–514

    Article  PubMed  Google Scholar 

  • Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11:663–672

    Article  CAS  PubMed  Google Scholar 

  • Porrino LJ, Crane AM, Goldman-Rakic PS (1981) Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J Comp Neurol 198:121–136

    Article  CAS  PubMed  Google Scholar 

  • Pourtois G, Schettino A, Vuilleumier P (2013) Brain mechanisms for emotional influences on perception and attention: what is magic and what is not. Biol Psychol 92:492–512

    Article  PubMed  Google Scholar 

  • Price JL (1995) Thalamus. In: Paxinos G (ed) The rat nervous system, 2nd Aufl. Academic, San Diego, pp 629–648

    Google Scholar 

  • Price JL (2003) Comparative aspects of amygdala connectivity. Ann N Y Acad Sci 985:50–58

    Article  PubMed  Google Scholar 

  • Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1:1242–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procyk E, Wilson CR, Stoll FM, Faraut MC, Petrides M, Amiez C (2016) Midcingulate motor map and feedback detection: converging data from humans and monkeys. Cereb Cortex 26:467–476

    PubMed  Google Scholar 

  • Puglisi-Allegra S, Andolina D (2015) Serotonin and stress coping. Behav Brain Res 277:58–67

    Article  CAS  PubMed  Google Scholar 

  • Rainville P (2002) Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol 12:195–204

    Article  CAS  PubMed  Google Scholar 

  • Rempel-Clower NL, Barbas H (1998) Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J Comp Neurol 398:393–419

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET (2012) The emotional systems. In: Mai JK, Paxinos G (eds) The human nervous system. Academic, London, pp 1328–1350

    Chapter  Google Scholar 

  • Root DH, Melendez RI, Zaborszky L, Napier TC (2015) The ventral pallidum: subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130:29–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudebeck PH, Murray EA (2014) The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron 84:1143–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russchen FT, Amaral DG, Price JL (1985) The afferent connections of the substantia innominata in the monkey, Macaca fascicularis. J Comp Neurol 242:1–27

    Article  CAS  PubMed  Google Scholar 

  • Russchen FT, Amaral DG, Price JL (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol 256:175–210

    Article  CAS  PubMed  Google Scholar 

  • Sabatinelli D, Fortune EE, Li Q, Siddiqui A, Krafft C, Oliver WT, Beck S, Jeffries J (2011) Emotional perception: meta-analyses of face and natural scene processing. NeuroImage 54:2524–2533

    Article  PubMed  Google Scholar 

  • Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10:211–223

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Nakai S, Sato T, Kimura M (2003) Correlated coding of motivation and outcome of decision by dopamine neurons. J Neurosci 23:9913–9923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Esber GR (2010) How do you (estimate you will) like them apples? Integration as a defining trait of orbitofrontal function. Curr Opin Neurobiol 20:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Takahashi Y, Tzu-Lan L, McDannald MA (2011) Does the orbitofrontal cortex signal value? Ann N Y Acad Sci 1239:87–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz MD, Kilduff TS (2015) The neurobiology of sleep and wakefulness. Psychiatr Clin North Am 38:615–644

    Article  PubMed  PubMed Central  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe MJ, Schoenbaum G (2016) Back to basics: making predictions in the orbitofrontal-amygdala circuit. Neurobiol Learn Mem 131:201–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Shelley BP, Trimble MR (2004) The insular lobe of Reil—its anatamico-functional, behavioural and neuropsychiatric attributes in humans—a review. World J Biol Psychiatry 5:176–200

    Article  PubMed  Google Scholar 

  • Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303:1157–1162

    Article  CAS  PubMed  Google Scholar 

  • Singer T, Critchley HD, Preuschoff K (2009) A common role of insula in feelings, empathy and uncertainty. Trends Cogn Sci 13:334–340

    Article  PubMed  Google Scholar 

  • Stalnaker TA, Cooch NK, Schoenbaum G (2015) What the orbitofrontal cortex does not do. Nat Neurosci 18:620–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanacci L, Amaral DG (2000) Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: a retrograde tracing study. J Comp Neurol 421:52–79

    Article  CAS  PubMed  Google Scholar 

  • Stefanacci L, Amaral DG (2002) Some observations on cortical inputs to the macaque monkey amygdala: an anterograde tracing study. J Comp Neurol 451:301–323

    Article  PubMed  Google Scholar 

  • Stephani C, Fernandez-Baca Vaca G, Maciunas R, Koubeissi M, Lüders HO (2011) Functional neuroanatomy of the insular lobe. Brain Struct Funct 216:137–149

    Article  CAS  PubMed  Google Scholar 

  • Sweeney P, Yang Y (2015) An excitatory ventral hippocampus to lateral septum circuit that suppresses feeding. Nat Commun 6:10188

    Article  CAS  PubMed  Google Scholar 

  • Sweeney P, Yang Y (2017) Neural circuit mechanisms underlying emotional regulation of homeostatic feeding. Trends Endocrinol Metab 28:437–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timbie C, Barbas H (2015) Pathways for emotions: specializations in the amygdalar, mediodorsal thalamic, and posterior orbitofrontal network. J Neurosci 35:11976–11987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth M, Fuzesi T, Halasz J, Tulogdi A, Haller J (2010) Neural inputs of the hypothalamic “aggression area” in the rat. Behav Brain Res 215:7–20

    Article  PubMed  Google Scholar 

  • Tsukahara S, Yamanouchi K (2001) Neurohistological and behavioral evidence for lordosis-inhibiting tract from lateral septum to periaqueductal gray in male rats. J Comp Neurol 431:293–310

    Article  CAS  PubMed  Google Scholar 

  • Turner BH, Gupta KC, Mishkin M (1978) The locus and cytoarchitecture of the projection areas of the olfactory bulb in Macaca mulatta. J Comp Neurol 177:381–396

    Article  CAS  PubMed  Google Scholar 

  • Veening JG, Coolen LM, Gerrits PO (2014) Neural mechanisms of female sexual behavior in the rat; comparison with male ejaculatory control. Pharmacol Biochem Behav 121:16–30

    Article  CAS  PubMed  Google Scholar 

  • Vertes RP, Linley SB, Hoover WB (2015) Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev 54:89–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Viard A, Doeller CF, Hartley T, Bird CM, Burgess N (2011) Anterior hippocampus and goal-directed spatial decision making. J Neurosci 31:4613–4621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt BA (2016) Midcingulate cortex: structure, connections, homologies, functions and diseases. J Chem Neuroanat 74:28–46

    Article  CAS  PubMed  Google Scholar 

  • Vogt BA, Pandya DN (1987) Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol 262:271–289

    Article  CAS  PubMed  Google Scholar 

  • Vogt BA, Palomero-Gallagher N (2012) Cingulate cortex. In: Mai JK, Paxinos G (eds) The human nervous system. Academic, London, pp 943–987

    Chapter  Google Scholar 

  • Vogt BA, Vogt L, Laureys S (2006) Cytology and functionally correlated circuits of human posterior cingulate areas. NeuroImage 29:452–466

    Article  PubMed  Google Scholar 

  • Vogt BA, Hof PR, Friedman DP, Sikes RW, Vogt LJ (2008) Norepinephrinergic afferents and cytology of the macaque monkey midline, mediodorsal, and intralaminar thalamic nuclei. Brain Struct Funct 212:465–479

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Economo C (1929) The cytoarchitectonics of the human cerebral cortex. Oxford University Press, London

    Google Scholar 

  • Walton ME, Behrens TE, Noonan MP, Rushworth MF (2011) Giving credit where credit is due: orbitofrontal cortex and valuation in an uncertain world. Ann N Y Acad Sci 1239:14–24

    Article  PubMed  Google Scholar 

  • Wilkenheiser AM, Schoenbaum G (2016) Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex. Nat Rev Neurosci 17:513–523

    Article  Google Scholar 

  • Wilson MA, Fadel JR (2017) Cholinergic regulation of fear learning and extinction. J Neurosci Res 95:836–852

    Article  CAS  PubMed  Google Scholar 

  • Wilson RC, Takahashi YK, Schoenbaum G, Niv Y (2014) Orbitofrontal cortex as a cognitive map of task space. Neuron 81:267–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita T, Yamanaka A (2017) Lateral hypothalamic circuits for sleep-wake control. Curr Opin Neurobiol 44:94–100

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Thankachan S, McCarley RW, Brown RE (2017) The menagerie of the basal forebrain: how many (neural) species are there, what do they look like, how do they behave and who talks to whom? Curr Opin Neurobiol 44:159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yau SY, Li A, So KF (2015) Involvement of adult hippocampal neurogenesis in learning and forgetting. Neural Plast 2015:717958

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahm DS, Root DH (2017) Review of the cytology and connections of the lateral habenula, an avatar of adaptive behaving. Pharmacol Biochem Behav 162:3–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341

    Article  PubMed  Google Scholar 

  • Zeman A, Coebergh JA (2013) The nature of consciousness. Handb Clin Neurol 118:373–407

    Article  PubMed  Google Scholar 

  • Zernig G, Pinheiro BS (2015) Dyadic social interaction inhibits cocaine-conditioned place preference and the associated activation of the accumbens corridor. Behav Pharmacol 26:580–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Gammie SC (2014) Glutamate, GABA, and glutamine are synchronously upregulated in the mouse lateral septum during the postpartum period. Brain Res 1591:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoicas I, Slattery DA, Neumann ID (2014) Brain oxytocin in social fear conditioning and its extinction: involvement of the lateral septum. Neuropsychopharmacology 39:3027–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorrilla EP, Koob GF (2013) Amygdalostriatal projections in the neurocircuitry for motivation: a neuroanatomical thread through the career of Ann Kelley. Neurosci Biobehav Rev 37:1932–1945

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Dicke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dicke, U. (2023). The Functional Neuroanatomy of the Limbic System. In: Roth, G., Heinz, A., Walter, H. (eds) Psychoneuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65774-4_2

Download citation

Publish with us

Policies and ethics