Skip to main content

Phosphate, Arsenate, Vanadate

  • Chapter
  • First Online:
Mineralogie

Zusammenfassung

Diese Mineralklasse (Tab. 10.1) ist wegen umfangreicher Diadochie-Möglichkeiten ganz besonders artenreich. Alle Strukturen dieser Klasse enthalten tetraedrische Anionenkomplexe [PO4]3−, [AsO4]3− bzw. [VO]3− als prinzipielle Baueinheiten, wobei sich P5+, As5+ und V5+ diadoch vertreten können. Die Kationen sind gegenüber O [9]-koordiniert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Boskey AL (2007) Mineralization of bones and teeth. Elements 3:385–391

    Article  Google Scholar 

  • Chakhmouradian AR, Wall F (2012) Rare earth elements: minerals, mines, magnets (and more). Elements 8:333–340

    Article  Google Scholar 

  • Chang LLY, Howie RA, Zussman J (1996) Rock-forming minerals, Bd 5B, 2. Aufl, Non-silicates: sulphates, carbonates, phosphates, halides. Longmans, Harlow

    Google Scholar 

  • Chew DM, Spikings RA (2015) Geochronology and thermochronology using apatite: time and temperature, lower crust to surface. Elements 11:189–194

    Article  Google Scholar 

  • Elliott JC (1994) Structures and chemistry of apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  • Hatch GP (2012) Dynamics of the global market for rare earths. Elements 8:341–346

    Article  Google Scholar 

  • Hughes JM, Rakovan JF (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11:165–170

    Article  Google Scholar 

  • McCubin FM, Jones RH (2015) Extraterrestrial apatite: planetary geochemistry to astrobiology. Elements 11:183–188

    Article  Google Scholar 

  • Oelkers EH, Montel J-M (2008) Phosphates and nuclear waste storage. Elements 4:113–116

    Article  Google Scholar 

  • Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ (2010) Nomenclature of the apatite supergroup minerals. Eur J Mineral 22:163–179

    Article  Google Scholar 

  • Pasteris JD, Wopenka B, Valsami-Jones E (2008) Bone and tooth mineralization: why apatite? Elements 4:94–104

    Article  Google Scholar 

  • Rakovan JF, Pasteris JD (2015) A technological gem: materials, medical, and environmental mineralogy of apatite. Elements 11:195–200

    Article  Google Scholar 

  • Simandl GJ (2014) Geology and market-dependent significance of rare earth element resources. Mineral Depos 49:889–904

    Article  Google Scholar 

  • U.S. Geological Survey (2021) Mineral commodity summaries 2021: U.S. Geological Survey, S 200. https://doi.org/10.3133/ mcs20201

  • Webster JD, Piccoli PM (2015) Magmatic apatite: a powerful, yet deceptive, mineral. Elements 11:177–182

    Article  Google Scholar 

  • White T, Ferraris C, Kim J, Madhavi S (2005) Apatite – an adaptive framework structure. Rev Mineral Geochem 57:307–401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Okrusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okrusch, M., Frimmel, H.E. (2022). Phosphate, Arsenate, Vanadate. In: Mineralogie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64064-7_10

Download citation

Publish with us

Policies and ethics