Skip to main content

Neuromuskuläre Elektrostimulation (NMES)

  • Chapter
  • First Online:
Evidenzbasierte Elektrotherapie
  • 1704 Accesses

Zusammenfassung

Mit Impulsstrom kann man Kontraktionen von innervierten Muskeln auslösen. Diese Anwendung kann die Muskelfunktion teilweise erhalten, wenn der Patient selber nicht anspannen kann oder darf, und kann – als Ergänzung zum aktiven Training – helfen, bestimmte Funktionen rascher zu verbessern. Wir wissen heute, dass es sich dabei nicht nur um dummes, lokales Muskelanspannen handelt, sondern dass auch lokale, segmentale und zentralneurologische Änderungen nachweisbar sind. Im Nachfolgenden werden Anwendungen besprochen im Zusammenhang mit herkömmlichem Kraft- und Ausdauertraining, die Muskelstimulation bei Inkontinenz und die Stimulation denervierter Muskulatur. Es wird auf Stimulation mit nieder- und mittelfrequentem Impulsstrom eingegangen. Auf SpringerLink finden sich ein Befundbogen, eine Checkliste zum Behandlungsablauf und eine allgemeine Übersicht zu den verschiedenen Anwendungen zum Herunterladen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adams C, Scott W, Basile J, Hughes L, Leigh J, Schiller A, Walton J (2018) Electrically elicited quadriceps muscle torque: a comparison of 3 waveforms. J Orthop Sports Phys Ther 48(3):217–224

    Article  PubMed  Google Scholar 

  • Alamer A, Melese H, Nigussie F (2020) Effectiveness of neuromuscular electrical stimulation on post-stroke dysphagia: a systematic review of randomized controlled trials. Clin Interv Aging 15:1521–1531

    Article  PubMed  PubMed Central  Google Scholar 

  • Allon EF (2019) The role of neuromuscular electrical stimulation in the rehabilitation of the pelvic floor muscles. Br J Nurs 28(15):968–974

    Article  PubMed  Google Scholar 

  • Amaral SL, Linderman JR, Morse MM, Greene AS (2001) Angiogenesis induced by electrical stimulation is mediated by angiotensin II and VEGF. Microcirculation 8(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Andersen JL, Gruschy-Knudsen T, Sandri C, Larsson L, Schiaffino S (1999) Bed rest increasess the amount of mismatched fibers in human skeletal muscle. J Appl Physiol 86(2):455–460

    Article  CAS  PubMed  Google Scholar 

  • Andersen JL, Weiss A, Sandri C, Schjerling P, Thonell LE, Pedrosa-Domellof F, Leinwand L, Schiaffino S (2002) The 2B myosin heavy chain gene is expressed in human skeletal muscle. J Physiol 539:29–30

    Google Scholar 

  • Andrianowa GG, Koz JM, Martjanow WA, Chwilon WA (1974) Die Anwendung der Elektrostimulation für das Training der Muskelkraft. Leistungssport 4(2):138–142

    Google Scholar 

  • Appell JJ (1992) Elektrotherapie zum Kraftaufbau der Skelettmuskulatur. Morphologische und elektrophysiologische Zusammenhänge. In: Wentzensen A, Schmelz A (Hrsg) Elektromyostimulation in der Traumatologie. Thieme, Stuttgart/New York, S 1–7

    Google Scholar 

  • Ausoni S, Gorza L, Schiaffino S, Gundersen K, Lømo T (1990) Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J Neurosci 10(1):153–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behringer M, Franz A, McCourt M, Mester J (2014) Motor point map of upper body muscles. Eur J Appl Physiol 114(8):1605–1617

    Google Scholar 

  • Berghmans LC, Hendriks HJ, De Bie RA, van Waalwijk van Doorn ES, Bø K, van Kerrebroeck PE (2000) Conservative treatment of urge urinary incontinence in women: a systematic review of randomized clinical trials. BJU Int 85(3):254–263

    Article  CAS  PubMed  Google Scholar 

  • Bergquist AJ, Clair JM, Collins DF (2011) Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: triceps surae. J Appl Physiol 110(3):627–637

    Article  CAS  PubMed  Google Scholar 

  • Bergquist AJ, Wiest MJ, Collins DF (2012) Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: quadriceps femoris. J Appl Physiol (1985). 113(1):78–89

    Google Scholar 

  • Bickel CS, Gregory CM, Dean JC (2011) Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol 111(10):2399–2407

    Article  PubMed  Google Scholar 

  • Binder-Macleod S, Russ D (1999) Effects of activation frequency and force on low-frequency fatigue in human skeletal muscle. J Appl Physiol 86(4):1337–1346

    Article  CAS  PubMed  Google Scholar 

  • Björkman A, Rosén B, Lundborg G (2004) Acute improvement of hand sensibility after selective ipsilateral cutaneous forearm anaesthesia. Eur J Neurosci 20(10):2733–2736

    Article  PubMed  Google Scholar 

  • Blickenstorfer A, Kleiser R, Keller T, Keisker B, Meyer M, Riener R, Kollias S (2009) Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI. Hum Brain Mapp 30(3):963–975

    Google Scholar 

  • Bossert FP, Jenrich W, Vogedes K (2006) Leitfaden Elektrotherapie: mit Anwendungen bei über 130 Krankheitsbildern. Urban & Fischer Verlag/Elsevier GmbH, ISBN-13: 978-3437319235

    Google Scholar 

  • Botter A, Oprandi G, Lanfranco F, Allasia S, Maffiuletti NA, Minetto MA (2011) Atlas of the muscle motor points for the lower limb: implications for electrical stimulation procedures and electrode positioning. Eur J Appl Physiol 111(10):2461–2471

    Article  PubMed  Google Scholar 

  • Brandes R, Lang F, Schmidt RF (2019) Physiologie des Menschen: mit Pathophysiologie, 32. Aufl. Springer-Lehrbuch, ISBN-13: 978-3662564677

    Book  Google Scholar 

  • Brushart T (1993) Motor axons preferentially reinnervate motor pathways. J Neurosci 13(6):2730–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brushart T, Gerber J, Kessens P, Chen YG, Royall R (1998) Contributions of pathway and neuron to preferential motor reinnervation. J Neurosci 18(21):8674–8681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnley M, Jones AM (2018) Power-duration relationship: physiology, fatigue, and the limits of human performance. Eur J Sport Sci 18(1):1–12

    Article  PubMed  Google Scholar 

  • Caiozzo V, Baker M, Herrick R, Tao M, Baldwin K (1994) Effect of spaceflight on skeletal muscle: mechanical properties and myosin isoform content of a slow muscle. J Appl Physiol 76:1764–1773

    Article  CAS  PubMed  Google Scholar 

  • Caiozzo V, Baker M, Baldwin K (1997) Modulation of myosin isoform expression by mechanical loading: role of stimulationfrequency. J Appl Physiol 82(1):211–218

    Article  CAS  PubMed  Google Scholar 

  • Carraro U, Boncompagni S, Gobbo V, Rossini K et al (2015) Persistent muscle fiber regeneration in long term denervation. Past, present, future. Eur J Transl Myol 25(2):4832

    Article  PubMed  PubMed Central  Google Scholar 

  • Carriker CR (2017) Components of fatigue: mind and body. J Strength Cond Res 31(11):3170–3176

    Article  PubMed  Google Scholar 

  • Cattagni T, Lepers R, Maffiuletti NA (2018) Effects of neuromuscular electrical stimulation on contralateral quadriceps function. J Electromyogr Kinesiol 38:111–118

    Article  PubMed  Google Scholar 

  • Chan Kwan Kit-lan P (1991) Contemporary trends in electrical stimulation: the frequency-specifity theorie. Hong Kong Physiother J 13:23–27

    Google Scholar 

  • Charlton CS, Ridding MC, Thompson PD, Miles TS (2003) Prolonged peripheral nerve stimulation induces persistent changes in excitability of human motor cortex. J Neurol Sci 208(1–2):79–85

    Article  PubMed  Google Scholar 

  • Chipchase LS, Schabrun SM, Hodges PW (2011) Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. Clin Neurophysiol 122(3):456–463

    Article  CAS  PubMed  Google Scholar 

  • Collins DF (2007) Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exerc Sport Sci Rev 35(3):102–109

    Google Scholar 

  • Collins DF, Burke D, Gandevia SC (2001) Large involuntary forces consistent with plateau-like behavior of human motoneurons. J Neurosci 1;21(11):4059–65

    Google Scholar 

  • Collins DF, Burke D, Gandevia SC (2002) Sustained contractions produced by plateau-like behaviour in human motoneurones. J Physiol 1;538(Pt 1):289–301

    Google Scholar 

  • Correia GN, Pereira VS, Hirakawa HS, Driusso P (2014) Effects of surface and intravaginal electrical stimulation in the treatment of women with stress urinary incontinence: randomized controlled trial. Eur J Obstet Gynecol Reprod Biol 173:113–118

    Google Scholar 

  • Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, Felici F, Farina D (2019) The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol 597(7):1873–1887

    Article  PubMed  PubMed Central  Google Scholar 

  • Dempsey-Jones H, Themistocleous AC, Carone D, Ng TWC, Harrar V, Makin TR (2019) Blocking tactile input to one finger using anaesthetic enhances touch perception and learning in other fingers. J Exp Psychol Gen 148(4):713–727

    Article  PubMed  PubMed Central  Google Scholar 

  • Dirks ML, Wall BT, Snijders T, Ottenbros CL, Verdijk LB, van Loon LJ (2014) Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta Physiol (Oxford) 210(3):628–641

    Article  CAS  Google Scholar 

  • Dirks ML, Hansen D, Van Assche A, Dendale P, Van Loon LJ (2015) Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients. Clin Sci (Lond) 128(6):357–365

    Article  CAS  PubMed  Google Scholar 

  • Dmochowski R, Lynch CM, Efros M, Cardozo L (2019) External electrical stimulation compared with intravaginal electrical stimulation for the treatment of stress urinary incontinence in women: a randomized controlled noninferiority trial. Neurourol Urodyn 38(7):1834–1843

    Article  PubMed  Google Scholar 

  • Dobin NB, Fizzell JA (1951) Electrodiagnostic and electromyographic study of muscle denervated by section of the anterior roots. Q Bull Northwest Univ Med Sch 25(4):338–41

    Google Scholar 

  • Ehrsson HH, Rosén B, Stockselius A, Ragnö C, Köhler P, Lundborg G (2008) Upper limb amputees can be induced to experience a rubber hand as their own. Brain 131(Pt 12):3443–3452

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmelund M, Biering-Sørensen F, Due U, Klarskov N (2018) The effect of pelvic floor muscle training and intravaginal electrical stimulation on urinary incontinence in women with incomplete spinal cord injury: an investigator-blinded parallel randomized clinical trial. Int Urogynecol J 29(11):1597–1606

    Article  PubMed  Google Scholar 

  • Erickson ML, Ryan TE, Backus D, McCully KK (2017) Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury. Muscle Nerve 55(5):669–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrer H, Rentsch HU, Gerber NJ, Beyeler C, Hess CW, Grünig B (1988) Knee effusion and reflex inhibition of the quadriceps. A bar to effective retraining. J Bone Joint Surg (Br) 70(4):635–638

    Article  CAS  PubMed  Google Scholar 

  • Filipovic A, Kleinöder H, Dörmann U, Mester J (2011) Electromyostimulation – a systematic review of the influence of training regimens and stimulation parameters on effectiveness in electromyostimulation training of selected strength parameters. J Strength Cond Res 25(11):3218–3238

    Article  PubMed  Google Scholar 

  • Filipovic A, Kleinöder H, Dörmann U, Mester J (2012) Electromyostimulation – a systematic review of the effects of different electromyostimulation methods on selected strength parameters in trained and elite athletes. J Strength Cond Res 26(9):2600–2614

    Article  PubMed  Google Scholar 

  • Finazzi-Agrò E, Petta F, Sciobica F, Pasqualetti P, Musco S, Bove P (2010) Percutaneous tibial nerve stimulation effects on detrusor overactivity incontinence are not due to a placebo effect: a randomized, double-blind, placebo controlled trial. J Urol 184(5):2001–2006

    Article  PubMed  Google Scholar 

  • Francis S, Lin X, Aboushoushah S, White TP, Phillips M, Bowtell R, Constantinescu CS (2009) fMRI analysis of active, passive and electrically stimulated ankle dorsiflexion. Neuroimage 15;44(2):469–479

    Google Scholar 

  • Franz A, Klaas J, Schumann M, Frankewitsch T, Filler TJ, Behringer M (2018) Anatomical versus functional motor points of selected upper body muscles. Muscle Nerve 57(3):460–465

    Article  PubMed  Google Scholar 

  • Gandhoke GS, Belykh E, Zhao X, Leblanc R, Preul MC (2019) Edwin Boldrey and Wilder Penfield’s homunculus: a life given by Mrs. Cantlie (in and out of realism). World Neurosurg 132:377–388

    Article  PubMed  Google Scholar 

  • Gigo-Benato D, Russo TL, Geuna S, Domingues NR, Salvini TF, Parizotto NA (2010) Electrical stimulation impairs early functional recovery and accentuates skeletal muscle atrophy after sciatic nerve crush injury in rats. Muscle Nerve 41(5):685–693

    Article  PubMed  Google Scholar 

  • Giroux C, Roduit B, Rodriguez-Falces J, Duchateau J, Maffiuletti NA, Place N (2018) Short vs. long pulses for testing knee extensor neuromuscular properties: does it matter? Eur J Appl Physiol 118(2):361–369

    Article  PubMed  Google Scholar 

  • Gittins J, Martin K, Sheldrick J, Reddy A, Thean L (1999) Electrical stimulation as a therapeutic option to improve eyelid function in chronic facial nerve disorders. Invest Ophthalmol Vis Sci 40(3):547–554

    CAS  PubMed  Google Scholar 

  • Gobbo M, Gaffurini P, Bissolotti L, Esposito F, Orizio C (2011) Transcutaneous neuromuscular electrical stimulation: influence of electrode positioning and stimulus amplitude settings on muscle response. Eur J Appl Physiol 111(10):2451–2459

    Article  CAS  PubMed  Google Scholar 

  • Gobbo M, Maffiuletti NA, Orizio C, Minetto MA (2014) Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. J Neuroeng Rehabil 11:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Gondin J, Brocca L, Bellinzona E, D’Antona G, Maffiuletti NA, Miotti D, Pellegrino MA, Bottinelli R (2011) Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol 110(2):433–450

    Article  CAS  PubMed  Google Scholar 

  • Graham GM, Thrasher TA, Popovic MR (2006) The effect of random modulation of functional electrical stimulation parameters on muscle fatigue. IEEE Trans Neural Syst Rehabil Eng 14(1):38–45

    Article  PubMed  Google Scholar 

  • Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85(4):358–364

    Article  PubMed  Google Scholar 

  • de Groat WC, Griffiths D, Yoshimura N (2015) Neural control of the lower urinary tract. Compr Physiol 5(1):327–396

    PubMed  PubMed Central  Google Scholar 

  • Guo GY, Kang YG (2018) Effectiveness of neuromuscular electrical stimulation therapy in patients with urinary incontinence after stroke: a randomized sham controlled trial. Medicine (Baltimore) 97(52):e13702

    Article  PubMed  Google Scholar 

  • Harkey MS, Gribble PA, Pietrosimone BG (2014) Disinhibitory interventions and voluntary quadriceps activation: a systematic review. J Athl Train 49(3):411–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965) Excitability and inhibitability of motoneurons of different sizes. J Neurophysiol 28(3):599–620

    Article  CAS  PubMed  Google Scholar 

  • Henriksson-Larsén K, Fridén J, Wretling ML (1985) Distribution of fibre sizes in human skeletal muscle. An enzyme histochemical study in m tibialis anterior. Acta Physiol Scand 123(2):171–177

    Article  PubMed  Google Scholar 

  • Hong Z, Sui M, Zhuang Z, Liu H, Zheng X, Cai C, Jin D (2018) Effectiveness of neuromuscular electrical stimulation on lower limbs of patients with hemiplegia after chronic stroke: a systematic review. Arch Phys Med Rehabil 99(5):1011–1022.e1

    Article  PubMed  Google Scholar 

  • Hopkins JT, Ingersoll CD, Krause BA, Edwards JE, Cordova ML (2001) Effect of knee joint effusion on quadriceps and soleus motoneuron pool excitability. Med Sci Sports Exerc 33(1):123–126

    Article  CAS  PubMed  Google Scholar 

  • Hopkins J, Ingersoll CD, Edwards J, Klootwyk TE (2002) Cryotherapy and transcutaneous electric neuromuscular stimulation decrease arthrogenic muscle inhibition of the vastus medialis after knee joint effusion. J Athl Train 37(1):25–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hortobágyi T, Maffiuletti NA (2011) Neural adaptations to electrical stimulation strength training. Eur J Appl Physiol 111(10):2439–2449

    Article  PubMed  PubMed Central  Google Scholar 

  • Hortobágyi T, Dempsey L, Fraser D, Zheng D, Hamilton G, Lambert J, Dohm L (2000) Changes in muscle strength, muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans. J Physiol 524(Pt 1):293–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Hudlická O, Tyler K, Aitman T (1980) The effect of long-term electrical stimulation on fuel uptake and performance in fast skeletal muscle. In: Pette D (Hrsg) Plasticity of muscle. Walter de Gruyter, Berlin, S 401–408

    Google Scholar 

  • Ironton R, Brown MC, Holland RL (1978) Stimuli to intramuscular nerve growth. Brain Res 156(2):351–354

    Article  CAS  PubMed  Google Scholar 

  • Jacomo RH, Alves AT, Lucio A, Garcia PA, Lorena DCR, de Sousa JB (2020) Transcutaneous tibial nerve stimulation versus parasacral stimulation in the treatment of overactive bladder in elderly people: a triple-blinded randomized controlled trial. Clinics (Sao Paulo) 75:e1477

    Article  PubMed  Google Scholar 

  • Janssen DA, Martens FM, de Wall LL, van Breda HM, Heesakkers JP (2017) Clinical utility of neurostimulation devices in the treatment of overactive bladder: current perspectives. Med Devices (Auckl) 10:109–122

    PubMed  Google Scholar 

  • Jiang Y, Wang H, Liu Z, Dong Y, Dong Y, Xiang X, Bai L, Tian J, Wu L, Han J, Cui C (2013) Manipulation of and sustained effects on the human brain induced by different modalities of acupuncture: an fMRI study. PLoS One 8(6):e66815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joa KL, Han YH, Mun CW, Son BK, Lee CH, Shin YB, Ko HY, Shin YI (2012) Evaluation of the brain activation induced by functional electrical stimulation and voluntary contraction using functional magnetic resonance imaging. J Neuroeng Rehabil 9:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DA, Bigland-Ritchie B, Edwards RH (1979) Excitation frequency and muscle fatigue: mechanical responses during voluntary and stimulated contractions. Exp Neurol 64(2):401–413

    Article  CAS  PubMed  Google Scholar 

  • Jubeau M, Gondin J, Martin A, Sartorio A, Maffiuletti NA (2007) Random motor unit activation by electrostimulation. Int J Sports Med 28(11):901–904

    Article  CAS  PubMed  Google Scholar 

  • Kaas AL, van de Ven V, Reithler J, Goebel R (2013) Tactile perceptual learning: learning curves and transfer to the contralateral finger. Exp Brain Res 224(3):477–488

    Article  PubMed  Google Scholar 

  • Kamel DM, Yousif AM (2017) Neuromuscular electrical stimulation and strength recovery of postnatal diastasis recti abdominis muscles. Ann Rehabil Med 41(3):465–474

    Article  PubMed  PubMed Central  Google Scholar 

  • Karabay İ, Doğan A, Ekiz T, Köseoğlu BF, Ersöz M (2016) Training postural control and sitting in children with cerebral palsy: Kinesio taping vs. neuromuscular electrical stimulation. Complement Ther Clin Pract 24:67–72

    Article  PubMed  Google Scholar 

  • Kern H, Chr H, Moedlin M, Forstner C, Vogelauer M, Richter W, Mayer W, Zanin ME, Rossini K, Carraro U (2004) First sound evidence of muscle regeneration in recovery of function of human permanent denervated muscle by a long-lasting functional electrical stimulation training: biopsy findings. Zdrav Vestn 73:II-29-31

    Google Scholar 

  • Kern H, Rossini K, Carraro U, Mayer W, Vogelauer M, Hoellwarth U, Chr H (2005) Muscle biopsies show that FES of denervated muscles reverses human muscle degeneration from permanent spinal motoneuron lesion. J Rehab Research Dev 42(3 Suppl 1):43–53

    Google Scholar 

  • Klakowicz PM, Baldwin ER, Collins DF (2006) Contribution of M-waves and H-reflexes to contractions evoked by tetanic nerve stimulation in humans. J Neurophysiol 96(3):1293–302

    Google Scholar 

  • Knowles CH, Horrocks EJ, Bremner SA, Stevens N, Norton C, O’Connell PR, Eldridge S, CONFIDeNT study group (2015) Percutaneous tibial nerve stimulation versus sham electrical stimulation for the treatment of faecal incontinence in adults (CONFIDeNT): a double-blind, multicentre, pragmatic, parallel-group, randomised controlled trial. Lancet 386(10004):1640–1648

    Article  PubMed  Google Scholar 

  • Kolasinski J, Makin TR, Logan JP, Jbabdi S, Clare S, Stagg CJ, Johansen-Berg H (2016) Perceptually relevant remapping of human somatotopy in 24 hours. elife 5:e17280

    Article  PubMed  PubMed Central  Google Scholar 

  • La Rosa VL, Ciebiera M, Lin LT, Sleiman Z, Cerentini TM, Lordelo P, Kahramanoglu I, Bruni S, Garzon S, Fichera M (2019a) Multidisciplinary management of women with pelvic organ prolapse, urinary incontinence and lower urinary tract symptoms. A clinical and psychological overview. Prz Menopauzalny 18(3):184–190

    PubMed  PubMed Central  Google Scholar 

  • La Rosa VL, Platania A, Ciebiera M, Garzon S, Jędra R, Ponta M, Butticè S (2019b) A comparison of sacral neuromodulation vs. transvaginal electrical stimulation for the treatment of refractory overactive bladder: the impact on quality of life, body image, sexual function, and emotional well-being. Prz Menopauzalny 18(2):89–93

    PubMed  PubMed Central  Google Scholar 

  • Lee JH, Baker LL, Johnson RE, Tilson JK (2017) Effectiveness of neuromuscular electrical stimulation for management of shoulder subluxation post-stroke: a systematic review with meta-analysis. Clin Rehabil 31(11):1431–1444

    Google Scholar 

  • Lee IS, Jung WM, Lee YS, Wallraven C, Chae Y (2015) Brain responses to acupuncture stimulation in the prosthetic hand of an amputee patient. Acupunct Med 33(5):420–424

    Article  PubMed  Google Scholar 

  • Lieber RL, Silva PD, Daniel DM (1996) Equal effectiveness of electrical and volitional strength training for quadriceps femoris muscles after anterior cruciate ligament surgery. J Orthop Res 14(1):131–138

    Article  CAS  PubMed  Google Scholar 

  • Lim D, Del Castillo M, Bergquist AJ, Milosevic M, Masani K (2021) Contribution of each motor point of quadriceps femoris to knee extension torque during neuromuscular electrical stimulation. IEEE Trans Neural Syst Rehabil Eng. https://doi.org/10.1109/TNSRE.2021.3052853. Epub ahead of print

  • Lundborg G (2000) Brain plasticity and hand surgery: an overview. J Hand Surg (Br) 25(3):242–252

    Article  CAS  PubMed  Google Scholar 

  • Lundborg G (2003) Richard P. Bunge memorial lecture. Nerve injury and repair – a challenge to the plastic brain. J Peripher Nerv Syst 8(4):209–226

    Article  PubMed  Google Scholar 

  • Lundborg G (2005) Nerve injury and repair, regeneration, reconstruction, and cortical remodeling. Churchill Livingstone; 2nd Rev. ed., ISBN-13: 978-0443067112

    Google Scholar 

  • Lundborg G, Rosén B (2007) Hand function after nerve repair. Acta Physiol (Oxford) 189(2):207–217

    Article  CAS  Google Scholar 

  • Maddocks M, Nolan CM, Man WD, Polkey MI, Hart N, Gao W, Rafferty GF, Moxham J, Higginson IJ (2016) Neuromuscular electrical stimulation to improve exercise capacity in patients with severe COPD: a randomised double-blind, placebo-controlled trial. Lancet Respir Med 4(1):27–36

    Article  PubMed  Google Scholar 

  • Maffiuletti NA (2010) Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol 110(2):223–234

    Article  PubMed  Google Scholar 

  • Maffiuletti NA, Gondin J, Place N, Stevens-Lapsley J, Vivodtzev I, Minetto MA (2018) Clinical use of neuromuscular electrical stimulation for neuromuscular rehabilitation: what are we overlooking? Arch Phys Med Rehabil 99(4):806–812

    Article  PubMed  Google Scholar 

  • Mäkelä E, Venesvirta H, Ilves M, Lylykangas J, Rantanen V, Ylä-Kotola T, Suominen S, Vehkaoja A, Verho J, Lekkala J, Surakka V, Rautiainen M (2019) Facial muscle reanimation by transcutaneous electrical stimulation for peripheral facial nerve palsy. J Med Eng Technol 43(3):155–164

    Article  PubMed  Google Scholar 

  • Mazur-Bialy AI, Kołomańska-Bogucka D, Nowakowski C, Tim S (2020) Urinary incontinence in women: modern methods of physiotherapy as a support for surgical treatment or independent therapy. J Clin Med 9(4):1211

    Article  PubMed  PubMed Central  Google Scholar 

  • Medeiros FV, Bottaro M, Vieira A, Lucas TP, Modesto KA, Bo APL, Cipriano G Jr, Babault N, Durigan JLQ (2017) Kilohertz and low-frequency electrical stimulation with the same pulse duration have similar efficiency for inducing isometric knee extension torque and discomfort. Am J Phys Med Rehabil 96(6):388–394

    Article  PubMed  Google Scholar 

  • Meesen RL, Cuypers K, Rothwell JC, Swinnen SP, Levin O (2011) The effect of long-term TENS on persistent neuroplastic changes in the human cerebral cortex. Hum Brain Mapp 32(6):872–882

    Article  PubMed  Google Scholar 

  • Mesin L, Merlo E, Merletti R, Orizio C (2010) Investigation of motor unit recruitment during stimulated contractions of tibialis anterior muscle. J Electromyogr Kinesiol 20(4):580–589

    Article  CAS  PubMed  Google Scholar 

  • Miller BF, Gruben KG, Morgan BJ (2000) Circulatory responses to voluntary and electrically induced muscle contractions in humans. Phys Ther 80(1):53–60

    Google Scholar 

  • Minetto MA, Botter A, Bottinelli O, Miotti D, Bottinelli R, D’Antona G (2013) Variability in muscle adaptation to electrical stimulation. Int J Sports Med 34(6):544–553

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto T, Kamada H, Tamaki A, Moritani T (2016) Low-intensity electrical muscle stimulation induces significant increases in muscle strength and cardiorespiratory fitness. Eur J Sport Sci 16(8):1104–1110

    Article  PubMed  Google Scholar 

  • Modesto KAG, de Oliveira PFA, Fonseca HG, Azevedo KP, Guzzoni V, Bottaro MF, Babault N, Durigan JLQ (2019) Russian and low-frequency currents training programs induced neuromuscular adaptations in soccer players: randomized controlled trial. J Sport Rehabil 29:1–25

    Google Scholar 

  • Moe JH, Post HW (1962) Functional electrical stimulation for ambulation in hemiplegia. J Lancet 82:285–288

    CAS  PubMed  Google Scholar 

  • Morrissey MC (1988) Electromyostimulation from a clinical perspective. A review. Sports Med 6(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Morrissey MC (1989) Reflex inhibition of thigh muscles in knee injury. Causes and treatment. Sports Med 7(4):263–276

    Article  CAS  PubMed  Google Scholar 

  • Nelson RM, Hunt GC (1981) Strenght-duration curve: intrarater and interrater reliability. Phys Ther 61(6):894–897

    Article  CAS  PubMed  Google Scholar 

  • Nix WA, Vrbova G (Hrsg) (1986) Electrical stimulation and neuromuscular disorders. Springer Verlag, Berlin/Heidelberg, ISBN-13 978-3-642-71339-2

    Google Scholar 

  • Nuhr M, Crevenna R, Gohlsch B, Bittner C, Pleiner J, Wiesinger G, Fialka-Moser V, Quittan M, Pette D (2003) Functional and biochemical properties of chronically stimulated human skeletal muscle. Eur J Appl Physiol 89(2):202–208

    Article  CAS  PubMed  Google Scholar 

  • Paternostro-Sluga T, Schuhfried O, Vacariu G, Lang T, Fialka-Moser V (2002) Chronaxie and accommodation index in the diagnosis of muscle denervation. Am J Phys Med Rehabil 81(4):253–260

    Article  PubMed  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Zugriff 20.02.2021 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.873.4232&rep=rep1&type=pdf

  • Pérez M, Lucia A, Rivero JL, Serrano AL, Calbet JA, Delgado MA, Chicharro JL (2002) Effects of transcutaneous short-term electrical stimulation on M. vastus lateralis characteristics of healthy young men. Pflugers Arch 443(5–6):866–74

    Google Scholar 

  • Peters KM, Carrico DJ, Perez-Marrero RA, Khan AU, Wooldridge LS, Davis GL, Macdiarmid SA (2010) Randomized trial of percutaneous tibial nerve stimulation versus Sham efficacy in the treatment of overactive bladder syndrome: results from the SUmiT trial. J Urol 183(4):1438–1443

    Article  PubMed  Google Scholar 

  • Pette D, Staron RS (2000) Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50(6):500–509

    Article  CAS  PubMed  Google Scholar 

  • Pieber K, Herceg M, Paternostro-Sluga T, Schuhfried O (2015) Optimizing stimulation parameters in functional electrical stimulation of denervated muscles: a cross-sectional study. J Neuroeng Rehabil 12:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Pogliano C (2012) Penfield’s homunculus and other grotesque creatures from the Land of If. Nuncius 27(1):141–162

    Article  PubMed  Google Scholar 

  • Popović DB (2014) Advances in functional electrical stimulation (FES). J Electromyogr Kinesiol 24(6):795–802

    Article  PubMed  Google Scholar 

  • Porcelli S, Marzorati M, Pugliese L, Adamo S, Gondin J, Bottinelli R, Grassi B (2012) Lack of functional effects of neuromuscular electrical stimulation on skeletal muscle oxidative metabolism in healthy humans. J Appl Physiol 113(7):1101–1109

    Article  PubMed  Google Scholar 

  • Prochazka A (2019) Motor neuroprostheses. Compr Physiol 9(1):127–148

    Google Scholar 

  • Proske U, Gandevia SC (2018) Kinesthetic Senses. Compr Physiol 8(3):1157–1183

    Article  PubMed  Google Scholar 

  • Qi YC, Niu XL, Gao YR, Wang HB, Hu M, Dong LP, Li YZ (2018) Therapeutic Effect Evaluation of Neuromuscular Electrical Stimulation With or Without Strengthening Exercise on Spastic Cerebral Palsy. Clin Pediatr (Phila) 57(5):580–583

    Google Scholar 

  • Ramírez-García I, Blanco-Ratto L, Kauffmann S, Carralero-Martínez A, Sánchez E (2019) Efficacy of transcutaneous stimulation of the posterior tibial nerve compared to percutaneous stimulation in idiopathic overactive bladder syndrome: randomized control trial. Neurourol Urodyn 38(1):261–268

    Article  PubMed  Google Scholar 

  • Rice DA, McNair PJ (2010) Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum 40(3):250–266

    Article  PubMed  Google Scholar 

  • Ridding MC, Brouwer B, Miles TS, Pitcher JB, Thompson PD (2000) Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 131(1):135–143

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Falces J, Place N (2013) Recruitment order of quadriceps motor units: femoral nerve vs. direct quadriceps stimulation. Eur J Appl Physiol 113(12):3069–3077

    Article  PubMed  Google Scholar 

  • Roig M, Reid WD (2009) Electrical stimulation and peripheral muscle function in COPD: a systematic review. Respir Med 103(4):485–495

    Article  PubMed  Google Scholar 

  • Rosén B, Chemnitz A, Weibull A, Andersson G, Dahlin LB, Björkman A (2012) Cerebral changes after injury to the median nerve: a long-term follow up. J Plast Surg Hand Surg 46(2):106–112

    Article  PubMed  Google Scholar 

  • Rosenthal J, Bernhardt M (1884) Elektrizitätslehre für Mediziner und Elektrotherapie, 3. Aufl. Verlag August Hirschwald, Berlin, Zugriff 15.02.2021 https://ia800907.us.archive.org/17/items/elektrizittsle00rose/elektrizittsle00rose_bw.pdf

    Google Scholar 

  • Rozman J, Zorko B, Seliskar A (2000) Regeneration of the radial nerve in a dog influenced by electrical stimulation. Pfluegers Arch – Eur J Physiol 439(3 Suppl):R184–R186

    Article  Google Scholar 

  • Sanjuán Vásquez M, Montes-Castillo ML, Zapata-Altamirano LE, Martínez-Torres S, Vázquez-Mellado J, López López CO (2019) Combining Russian stimulation with isometric exercise improves strength, balance, and mobility in older people with falls syndrome. Int J Rehabil Res 42(1):41–45

    Google Scholar 

  • Scaldazza CV, Morosetti C, Giampieretti R, Lorenzetti R, Baroni M (2017) Percutaneous tibial nerve stimulation versus electrical stimulation with pelvic floor muscle training for overactive bladder syndrome in women: results of a randomized controlled study. Int Braz J Urol 43(1):121–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531

    Article  CAS  PubMed  Google Scholar 

  • Schnizer W, Manert W, Kleinschmidt J, Magyarosy I, Drexel H (1980) Die Wirkung verschiedener elektrotherapeutischer Verfahren auf Durchblutung und Venenkapazität der unteren Extremität. Z Phys Med 9:85

    Google Scholar 

  • Schuhfried O, Vacariu G, Paternostro-Sluga T (2005) Reliability of chronaxie and accommodation index in the diagnosis of muscle denervation. Phys Med Rehab Kur 15(3):174–178

    Article  Google Scholar 

  • Scott W, Adams C, Cyr S, Hanscom B, Hill K, Lawson J, Ziegenbein C (2015) Electrically elicited muscle torque: comparison between 2500-Hz burst-modulated alternating current and monophasic pulsed current. J Orthop Sports Phys Ther 45(12):1035–1041

    Article  PubMed  Google Scholar 

  • Seyri K, Maffiuletti N (2011) Effect of Electromyostimulation Training on Muscle Strength and Sports Performance. Strength and Conditioning Journal 33 (1):70–75

    Google Scholar 

  • da Silva VZ, Durigan JL, Arena R, de Noronha M, Gurney B, Cipriano G Jr (2015) Current evidence demonstrates similar effects of kilohertz-frequency and low-frequency current on quadriceps evoked torque and discomfort in healthy individuals: a systematic review with meta-analysis. Physiother Theory Pract 31(8):533–539

    Article  PubMed  Google Scholar 

  • Smerdu V, Karsch-Mizrachi I, Campione M, Leinwand L, Schiaffino S (1994) Type IIX MHC transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Phys 267(6 Pt 1):C1723–C1728

    Article  CAS  Google Scholar 

  • Smith GV, Alon G, Roys SR, Gullapalli RP (2003) Functional MRI determination of a dose-response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects. Exp Brain Res 150(1):33–39

    Article  PubMed  Google Scholar 

  • Spector P, Laufer Y, Elboim Gabyzon M, Kittelson A, Stevens Lapsley J, Maffiuletti NA (2016) Neuromuscular electrical stimulation therapy to restore quadriceps muscle function in patients after orthopaedic surgery: a novel structured approach. J Bone Joint Surg Am 98(23):2017–2024

    Article  PubMed  Google Scholar 

  • Spencer JD, Hayes KC, Alexander IJ (1984) Knee joint effusion and quadriceps reflex inhibition in man. Arch Phys Med Rehabil 65(4):171–177

    CAS  PubMed  Google Scholar 

  • Staron R, Hagerman F, Hikida R, Murray T, Hostler D, Crill M, Ragg K, Toma K (2000) Fiber Type Composition of the Vastus Lateralis Muscle of Young Men and Women. J Histochem Cytochem 48:623–630

    Article  CAS  PubMed  Google Scholar 

  • Stein C, Fritsch CG, Robinson C, Sbruzzi G, Plentz RD (2015) Effects of electrical stimulation in spastic muscles after stroke: systematic review and meta-analysis of randomized controlled trials. Stroke 46(8):2197–2205

    Article  PubMed  Google Scholar 

  • Steinacker JM, Wang L, Lormes W, Reissnecker S, Liu Y (2002) Strukturanpassungen des Skelettmuskels auf Training. Deutsche Zeitschrift f Sportmedizin 12:354–360

    Google Scholar 

  • Stephens WGS (1973) The assessment of muscle denervation by electrical stimulation. Physiotherapy 59(9):292–294

    CAS  PubMed  Google Scholar 

  • Stewart F, Berghmans B, Bø K, Glazener CM (2017) Electrical stimulation with non-implanted devices for stress urinary incontinence in women. Cochrane Database Syst Rev 12(12):CD012390

    PubMed  Google Scholar 

  • Stillman BC (1967) Some aspects of the theory, performance, and interpretation of the strength duration test. Aust J Physiother 13(2):62–71

    Google Scholar 

  • Szecsi J, Fornusek C (2014) Comparison of torque and discomfort produced by sinusoidal and rectangular alternating current electrical stimulation in the quadriceps muscle at variable burst duty cycles. Am J Phys Med Rehabil 93(2):146–159

    Article  PubMed  Google Scholar 

  • Tam SL, Archibald V, Jassar B, Tyreman N, Gordon T (2001) Increased neuromuscular activity reduces sprouting in partially denervated muscles. J Neurosci 21(2):654–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan K, Wells CI, Dinning P, Bissett IP, O’Grady G (2019) Placebo response rates in electrical nerve stimulation trials for fecal incontinence and constipation: a systematic review and meta-analysis. Neuromodulation. https://doi.org/10.1111/ner.13092. Epub ahead of print. Zugriff 12.02.2021

  • Thériault R, Boulay MR, Thériault G, Simoneau JA (1996) Electrical stimulation-induced changes in performance and fiber type proportion of human knee extensor muscles. Eur J Appl Physiol Occup Physiol 74(4):311–317

    Article  PubMed  Google Scholar 

  • Thrasher A, Graham GM, Popovic MR (2005) Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters. Artif Organs 29(6):453–458

    Google Scholar 

  • Thrasher TA, Popovic MR (2008) Functional electrical stimulation of walking: function, exercise and rehabilitation. Ann Readapt Med Phys 51(6):452–460

    Article  CAS  PubMed  Google Scholar 

  • Vanderthommen M, Duchateau J (2007) Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc Sport Sci Rev 35(4):180–185

    Article  PubMed  Google Scholar 

  • Vaz MA, Frasson VB (2018) Low-frequency pulsed current versus kilohertz-frequency alternating current: a scoping literature review. Arch Phys Med Rehabil 99(4):792–805

    Article  PubMed  Google Scholar 

  • Veldman MP, Gondin J, Place N, Maffiuletti NA (2016) Effects of neuromuscular electrical stimulation training on endurance performance. Front Physiol 7:544

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira PJ, Chiappa AM, Cipriano G Jr, Umpierre D, Arena R, Chiappa GR (2014) Neuromuscular electrical stimulation improves clinical and physiological function in COPD patients. Respir Med 108(4):609–620

    Article  PubMed  Google Scholar 

  • Vromans M, Faghri PD (2018) Functional electrical stimulation-induced muscular fatigue: effect of fiber composition and stimulation frequency on rate of fatigue development. J Electromyogr Kinesiol 38:67–72

    Article  PubMed  Google Scholar 

  • de Wall LL, Heesakkers JP (2017) Effectiveness of percutaneous tibial nerve stimulation in the treatment of overactive bladder syndrome. Res Rep Urol 9:145–157

    PubMed  PubMed Central  Google Scholar 

  • Walløe L, Wesche J (1988) Time course and magnitude of blood flow changes in the human quadriceps muscles during and following rhythmic exercise. J Physiol 405:257–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Walton JN (1954) The value of electrodiagnostic methods in the investigation of neuromuscular disease. Physiotherapy 40(3):76–84

    Google Scholar 

  • Wand BM, Stephens SE, Mangharam EI, George PJ, Bulsara MK, O’Connell NE, Moseley GL (2014) Illusory touch temporarily improves sensation in areas of chronic numbness: a brief communication. Neurorehabil Neural Repair 28(8):797–799

    Article  PubMed  Google Scholar 

  • Ward AR (2009) Electrical stimulation using kilohertz-frequency alternating current. Phys Ther 89(2):181–190

    Article  PubMed  Google Scholar 

  • Ward AR, Chuen WL (2009) Lowering of sensory, motor, and pain-tolerance thresholds with burst duration using kilohertz-frequency alternating current electric stimulation: part II. Arch Phys Med Rehabil 90(9):1619–1627

    Google Scholar 

  • Ward AR, Shkuratova N (2002) Russian electrical stimulation: the early experiments. Phys Ther 82(10):1019–1030

    Article  PubMed  Google Scholar 

  • Ward AR, Robertson VJ, Ioannou H (2004) The effect of duty cycle and frequency on muscle torque production using kilohertz frequency range alternating current. Med Eng Phys 26(7):569–579

    Article  PubMed  Google Scholar 

  • Watanabe K, Kouzaki M, Ando R, Akima H, Moritani T (2015) Non-uniform recruitment along human rectus femoris muscle during transcutaneous electrical nerve stimulation. Eur J Appl Physiol 115(10):2159–2165

    Article  PubMed  Google Scholar 

  • Wesche J (1986) The time course and magnitude of blood flow changes in the human quadriceps muscles following isometric contraction. J Physiol 377:445–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willand MP (2015) Electrical stimulation enhances reinnervation after nerve injury. Eur J Transl Myol 25(4):243–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Willand MP, Holmes M, Bain JR, Fahnestock M, De Bruin H (2013a) Electrical muscle stimulation after immediate nerve repair reduces muscle atrophy without affecting reinnervation. Muscle Nerve 48(2):219–225

    Article  PubMed  Google Scholar 

  • Willand MP, Zhang JJ, Chiang CD, Borschel GH, Gordon T (2013b) Electrical muscle stimulation increases early reinnervation following nerve injury and immediate repair. In: 6th International IEEE/EMBS conference on Neural Engineering (NER), San Diego, CA, pp. 315–318

    Google Scholar 

  • Willand MP, Chiang CD, Zhang JJ, Kemp SW, Borschel GH, Gordon T (2015) Daily electrical muscle stimulation enhances functional recovery following nerve transection and repair in rats. Neurorehabil Neural Repair 29(7):690–700

    Article  PubMed  Google Scholar 

  • Willand MP, Borschel GH, Gordon T (2016a) Electrically stimulating nerve and muscle to enhance regeneration and reinnervation following peripheral nerve injury. IFESS 2016 – La Grande Motte, France. Zugriff 10.02.2021 https://ifess2016.inria.fr/files/2016/02/IFESS_2016_paper_49.pdf

  • Willand MP, Rosa E, Michalski B, Zhang JJ, Gordon T, Fahnestock M, Borschel GH (2016b) Electrical muscle stimulation elevates intramuscular BDNF and GDNF mRNA following peripheral nerve injury and repair in rats. Neuroscience 334:93–104

    Article  CAS  PubMed  Google Scholar 

  • Zealear DL, Billante CL, Chongkolwatana C, Herzon GD (2000a) The effects of chronic electrical stimulation on laryngeal muscle reinnervation. ORL J Otorhinolaryngol Relat Spec 62(2):87–95

    Article  CAS  PubMed  Google Scholar 

  • Zealear DL, Billante CR, Chongkolwatana C, Rho YS, Hamdan AL, Herzon GD (2000b) The effects of chronic electrical stimulation on laryngeal muscle physiology and histochemistry. ORL J Otorhinolaryngol Relat Spec 62(2):81–86

    Article  CAS  PubMed  Google Scholar 

  • Zealear D, Rodriguez R, Kenny T, Billante M, Cho Y, Billante C, Garren K (2002) Electrical stimulation of a denervated muscle promotes selective reinnervation by native over foreign motoneurons. J Neurophysiol 87(4):2195–2199

    Google Scholar 

  • Zealear DL, Mainthia R, Li Y, Kunibe I, Katada A, Billante C, Nomura K (2014) Stimulation of denervated muscle promotes selective reinnervation, prevents synkinesis, and restores function. Laryngoscope 124(5):E180–E187

    Google Scholar 

  • Zoladz JA (2018) Muscle and exercise physiology, 1. Aufl. Elzevier, Academic Press, ISBN: 9780128145937

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

6.1 Elektronisches Zusatzmaterial

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Kerkhof, P. (2022). Neuromuskuläre Elektrostimulation (NMES). In: Evidenzbasierte Elektrotherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63536-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63536-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63535-3

  • Online ISBN: 978-3-662-63536-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics