Skip to main content

Advertisement

Log in

Recruitment order of quadriceps motor units: femoral nerve vs. direct quadriceps stimulation

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Introduction

To investigate potential differences in the recruitment order of motor units (MUs) in the quadriceps femoris when electrical stimulation is applied over the quadriceps belly versus the femoral nerve.

Methods

M-waves and mechanical twitches were evoked using femoral nerve stimulation and direct quadriceps stimulation of gradually increasing intensity from 20 young, healthy subjects. Recruitment order was investigated by analysing the time-to-peak twitch and the time interval from the stimulus artefact to the M-wave positive peak (M-wave latency) for the vastus medialis (VM) and vastus lateralis (VL) muscles.

Results

During femoral nerve stimulation, time-to-peak twitch and M-wave latency decreased consistently (P < 0.05) with increasing stimulus intensity, whereas, during graded direct quadriceps stimulation, time-to-peak twitch and VL M-wave latency did not show a clear trend (P > 0.05). For the VM muscle, M-wave latency decreased with increasing stimulation level for both femoral nerve and direct quadriceps stimulation, whereas, for the VL muscle, the variation of M-wave latency with stimulus intensity was different for the two stimulation geometries (P < 0.05).

Conclusions

Femoral nerve stimulation activated MUs according to the size principle, whereas the recruitment order during direct quadriceps stimulation was more complex, depending ultimately on the architecture of the peripheral nerve and its terminal branches below the stimulating electrodes for each muscle. For the VM, MUs were orderly recruited for both stimulation geometries, whereas, for the VL muscle, MUs were orderly recruited for femoral nerve stimulation, but followed no particular order for direct quadriceps stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alkner BA, Tesch PA, Berg HE (2000) Quadriceps EMG/force relationship in knee extension and leg press. Med Sci Sports Exerc 32:459–463

    Article  PubMed  CAS  Google Scholar 

  • Becker I, Baxter GD, Woodley SJ (2010) The vastus lateralis muscle: an anatomical investigation. Clin Anat 23:575–585

    Article  PubMed  CAS  Google Scholar 

  • Bickel CS, Gregory CM, Dean JC (2011) Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol 111(10):2399–2407

    Article  PubMed  Google Scholar 

  • Blair E, Erlanger J (1933) A comparison of the characteristics of axons through their individual electrical responses. Am J Physiol 106:524–564

    Google Scholar 

  • Blazevich AJ, Gill ND, Zhou S (2006) Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat 209(3):289–310

    Article  PubMed  Google Scholar 

  • Blok JH, Ruitenberg A, Maathuis EM, Visser GH (2007) The electrophysiological muscle scan. Muscle Nerve 36:436–446

    Article  PubMed  Google Scholar 

  • Botter A, Oprandi G, Lanfranco F, Allasia S, Maffiuletti NA, Minetto MA (2011) Atlas of the muscle motor points for the lower limb: implications for electrical stimulation procedures and electrode positioning. Eur J Appl Physiol 111:2461–2471

    Article  PubMed  Google Scholar 

  • Burke RE, Levine DN, Tsairis P, Zajac FE (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234(3):723–748

    PubMed  CAS  Google Scholar 

  • Farina D, Blanchietti A, Pozzo M, Merletti R (2004) M-wave properties during progressive motor unit activation by transcutaneous stimulation. J Appl Physiol 97(2):545–555

    Article  PubMed  Google Scholar 

  • Feiereisen P, Duchateau J, Hainaut K (1997) Motor unit recruitment order during voluntary and electrically induced contractions in the tibialis anterior. Exp Brain Res 114(1):117–123

    Article  PubMed  CAS  Google Scholar 

  • Gerrits HL, De Haan A, Hopman MT, van Der Woude LH, Jones DA, Sargeant AJ (1999) Contractile properties of the quadriceps muscle in individuals with spinal cord injury. Muscle Nerve 22(9):1249–1256

    Article  PubMed  CAS  Google Scholar 

  • Glinsky J, Harvey L, Van Es P (2007) Efficacy of electrical stimulation to increase muscle strength in people with neurological conditions: systematic review. Physiother Res Int 12(3):175–194

    Article  PubMed  Google Scholar 

  • Godfrey S, Butler JE, Griffin L, Thomas CK (2002) Differential fatigue of paralyzed thenar muscles by stimuli of different intensities. Muscle Nerve 26:122–131

    Article  PubMed  Google Scholar 

  • Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85:358–364

    PubMed  Google Scholar 

  • Grill WM, Mortimer JT (1995) Stimulus waveforms for selective neural stimulation. IEEE Eng Med Biol 14:375–385

    Article  Google Scholar 

  • Henderson RD, Ridall GR, Pettitt AN, McCombe PA, Daube JR (2006) The stimulus-response curve and motor unit variability in normal subjects and subjects with amyotrophic lateral sclerosis. Muscle Nerve 34:34–43

    Article  PubMed  CAS  Google Scholar 

  • Heyters M, Carpentier A, Duchateau J, Hainaut K (1994) Twitch analysis as an approach to motor unit activation during electrical stimulation. Can J Appl Physiol 19(4):451–461

    Article  PubMed  CAS  Google Scholar 

  • Jubeau M, Gondin J, Martin A, Sartorio A, Maffiuletti NA (2007) Random motor unit activation by electrostimulation. Int J Sports Med 28(11):901–904

    Article  PubMed  CAS  Google Scholar 

  • Knaflitz M, Merletti R, De Luca CJ (1990) Inference of motor unit recruitment order in voluntary and electrically elicited contractions. J Appl Physiol 68:1657–1667

    PubMed  CAS  Google Scholar 

  • Lieber RL, Fridén J (2000) Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23(11):1647–1666

    Article  PubMed  CAS  Google Scholar 

  • McNeal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23(4):329–337

    Article  PubMed  CAS  Google Scholar 

  • Merletti R, Knaflitz M, DeLuca CJ (1992) Electrically evoked myoelectric signals. Crit Rev Biomed Eng 19(4):293–340

    PubMed  CAS  Google Scholar 

  • Millet GY, Martin V, Martin A, Vergès S (2011) Electrical stimulation for testing neuromuscular function: from sport to pathology. Eur J Appl Physiol 111:2489–2500

    Article  PubMed  Google Scholar 

  • Newsam CJ, Baker LL (2004) Effect of an electric stimulation facilitation program on quadriceps motor unit recruitment after stroke. Arch Phys Med Rehabil 85(12):2040–2045

    Article  PubMed  Google Scholar 

  • Nilsson HJ, Levinsson A, Schouenborg J (1997) Cutaneous field stimulation (CFS): a new powerful method to combat itch. Pain 71(1):49–55

    Article  PubMed  CAS  Google Scholar 

  • Nodera H, Bostock H, Izumi Y, Nakamura K, Urushihara R, Sakamoto T, Murase N, Shimazu H, Kusunoki S, Kaji R (2006) Activity-dependent conduction block in multifocal motor neuropathy: magnetic fatigue test. Neurology 67(2):280–287

    Article  PubMed  CAS  Google Scholar 

  • Place N, Matkowski B, Martin A, Lepers R (2006) Synergists activation pattern of the quadriceps muscle differs when performing sustained isometric contractions with different EMG biofeedback. Exp Brain Res 174:595–603

    Article  PubMed  Google Scholar 

  • Place N, Maffiuletti NA, Martin A, Lepers R (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35:486–495

    Article  PubMed  Google Scholar 

  • Place N, Casartelli N, Glatthorn JF, Maffiuletti NA (2010) Comparison of quadriceps inactivation between nerve and muscle stimulation. Muscle Nerve 42:894–900

    Article  PubMed  Google Scholar 

  • Rattay F (1990) Electrical nerve stimulation: theory, experiments and applications. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Rodriguez-Falces J, Maffiuletti NA, Place N (2013) Spatial distribution of motor units recruited during electrical stimulation of the quadriceps muscle versus the femoral nerve. Muscle Nerve. doi:10.1002/mus.23811

  • Sung DH, Jung JY, Kim HD, Ha BJ, Ko YJ (2003) Motor branch of the rectus femoris: anatomic location for selective motor branch block in stiff-legged gait. Arch Phys Med Rehabil 84:1028–1031

    Article  PubMed  Google Scholar 

  • Thomas CK, Westling G (1995) Tactile unit properties after human cervical spinal cord injury. Brain 118:1547–1556

    Article  PubMed  Google Scholar 

  • Thomas CK, Nelson G, Than L, Zijdewind I (2002) Motor unit activation order during electrically evoked contractions of paralyzed or partially paralyzed muscles. Muscle Nerve 25:797–804

    Article  PubMed  Google Scholar 

  • Trappe TA, Lindquist DM, Carrithers JA (2001) Muscle-specific atrophy of the quadriceps femoris with aging. J Appl Physiol 90:2070–2074

    PubMed  CAS  Google Scholar 

  • Trimble MH, Enoka RM (1991) Mechanisms underlying the training effects associated with neuromuscular electrical stimulation. Phys Ther 71(4):273–280

    PubMed  CAS  Google Scholar 

  • Westling G, Johansson RS, Thomas CK, Bigland-Ritchie B (1990) Measurement of contractile and electrical properties of single human thenar motor units in response to intraneural motoraxon stimulation. J Neurophysiol 64:1331–1338

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Marc Buclin for the design and conception of the Ergometer. This work was supported by funds from De Reuter foundation, the Geneva Academic Society, and the Ernest Boninchi foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Rodriguez-Falces.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Falces, J., Place, N. Recruitment order of quadriceps motor units: femoral nerve vs. direct quadriceps stimulation. Eur J Appl Physiol 113, 3069–3077 (2013). https://doi.org/10.1007/s00421-013-2736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2736-2

Keywords

Navigation