Skip to main content

Numerical simulation and statistical analysis of a cascaded flexure hinge for use in a cryogenic working environment

Abstract

Due to their many advantages, flexible structures are increasingly being used as guide and transmission elements in handling systems. Prismatic solid-state joints with a concentrated cross-sectional reduction are predominantly used as flexure pivots for both microscopic and macroscopic designs. A transfer of these geometries to applications in cryogenic working environments is not easily possible at temperatures below -130 °C due to the changed material properties. In this paper, the further development of swivel joints as cascaded solid state joints for such a cryogenic environment is illustrated by the targeted adaptation of certain joint parameters and dimensions. By means of a comprehensive FEM simulation, it can be shown how the influence of specific parameters affects movement accuracy, process forces and shape stability and to what extent these geometric parameters influence each other in their effect.

Keywords

  • compliant mechanisms
  • flexure hinges
  • cryogenic workspace

References

  1. Viadero, F., Ceccarelli, M.: New trends in mechanism and machine science. Theory and applications in engineering. Mechanisms and machine science, vol. 7. Springer, Dordrecht (2013)

    Google Scholar 

  2. Ratchev, S.: Precision Assembly Technologies for Mini and Micro Products. Proceedings of the IFIP TC5 WG5.5 Third International Precision Assembly Seminar (IPAS 2006), 19-21 February 2006, Bad Hofgastein, Austria. IFIP International Federation for Information Processing, vol. 198. International Federation for Information Processing, Boston, MA (2006)

    Google Scholar 

  3. Ezekiel, M.: Fully Compliant Mechanisms for Bearing Subtraction in Robotics and Space Applications. BYU ScholarsArchive, Brigham Young University, Provo, Utah (2013)

    Google Scholar 

  4. Fowler, R.: Investigation of Compliant Space Mechanisms with Application to the Design of a Large-Displacement Monolithic Compliant Rotational Hinge. BYU ScholarsArchive Brigham Young University, Provo, Utah (2012)

    Google Scholar 

  5. Friedrich, R., Lammering, R., Rösner, M.: On the modeling of flexure hinge mechanisms with finite beam elements of variable cross section. Precision Engineering 38, Hamburg (2014).

    Google Scholar 

  6. Friedrich, R.: Modellierung und Optimierung nachgiebiger Mechanismen auf Basis elastischer Festkörpergelenke mit Hilfe von nichtlinearen Finiten Balkenelementen, Fakultät für Maschinenbau der Helmut-Schmidt-Universität, Hamburg (2016)

    Google Scholar 

  7. Jacobsen, J.O., Chen, G., Howell, L.L., Magleby, S.P.: Lamina Emergent Torsional (LET) Joint. BYU ScholarsArchive , Brigham Young University, Provo, Utah (2009).

    Google Scholar 

  8. Linß, S.: Nachgiebige Koppelmechanismen mit optimierten Festkörpergelenken für Präzisionsanwendungen. Proceedings of IFToMM D-A-CH Conference, Dortmund (2015)

    Google Scholar 

  9. Linß, S.: Einfluss der Festkörpergelenkkontur auf die Bewegungsgenauigkeit und die Gestaltfestigkeit nachgiebiger Koppelmechanismen. 10. Kolloquium Getriebetechnik, Illmenau (2013)

    Google Scholar 

  10. Linß, S., Zentner, L., Kolev, E., Pavlović, N.D.: Ein Beitrag zur geometrischen Gestaltung und Optimierung prismatischer Festkörpergelenke in nachgiebigen Koppelmechanismen. Berichte der Ilmenauer Mechanismentechnik (BIMT), vol. 4. Univ.-Verl. Ilmenau, Ilmenau (2015)

    Google Scholar 

  11. Liu, M., Zhang, X., Fatikow, S.: Design of flexure hinges based on stress-constrained topology optimization. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Springer, Dordrecht (2016).

    Google Scholar 

  12. Lobontiu, N., Paine, J.S.N.: Design of Circular Cross-Section Corner-Filleted Flexure Hinges for Three-Dimensional Compliant Mechanisms. Journal of Mechanical Design, Dynamic Structures and Materials, Franklin, TN (2002).

    Google Scholar 

  13. Lobontiu, N., Paine, J.S., O’Malley, E., Samuelson, M.: Parabolic and hyperbolic flexure hinges. Flexibility, motion precision and stress characterization based on compliance closed-form equations. Mechanism and Machine Theory 37, Franklin, TN (2002).

    Google Scholar 

  14. Lobontiu, N., Paine, J.S., Garcia, E., Goldfarb, M.: Design of symmetric conic-section flexure hinges based on closed-form compliance equations. Proceedings of NAMM 2014, Timisoara, Romania (2014)

    Google Scholar 

  15. Parvari Rad, F., Vertechy, R., Berselli, G., Parenti-Castelli, V.: Design and Stiffness Evaluation of a Compliant Joint with Parallel Architecture Realizing an Approximately Spherical Motion. Robotic Actuators, MDPI (2018).

    Google Scholar 

  16. Rösner m.: Effiziente räumliche Modelle komplexer nachgiebiger Mechanismen auf Basis elastischer Festkörpergelenke. Helmut-Schmidt-Universität, Hamburg (2015)

    Google Scholar 

  17. Trease, B.P., Moon, Y.-M., Kota, S.: Design of Large-Displacement Compliant Joints. Journal of Mechanical Design (JMD) (2005).

    Google Scholar 

  18. Cannon,J.R., Lusk, C.P., Howell, L.L.: Compliant Rolling-Contact Element Mechanisms. Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B. Long Beach, CA (2005)

    Google Scholar 

  19. Hesselbach, J., Raatz, A., Kunzmann, H.: Performance of Pseudo-Elastic Flexure Hinges in Parallel Robots for Micro-Assembly Tasks. CIRP Annals (2004).

    Google Scholar 

  20. Hesselbach, J., Raatz, A.: Compliant parallel robot with 6 DOF. In: Nelson, B.J., Breguet, J.-M. (eds.) Intelligent Systems and Advanced Manufacturing. Intelligent Systems and Advanced Manufacturing, Boston, MA (2001).

    Google Scholar 

  21. Raatz, A.: Stoffschlüssige Gelenke aus pseudo-elastischen Formgedächtnislegierungen in Parallelrobotern, IWF, Braunschweig (2006)

    Google Scholar 

  22. Heinein, S., Spanduakis, P., Droz, S.: Flexure Pivot for Aerospace Mechanisms. In: 10th European Space Mechanisms and Tribology Symposium San Sebastian, Spain (2003)

    Google Scholar 

  23. Hongzhe, Z., Shusheng, B.: Accuracy characteristics of the generalized cross-spring pivot. Mechanism and Machine Theory. International Journal of Solids and Structures (2010).

    Google Scholar 

  24. Ruge, J., Wohlfahrt, H.: Technologie der Werkstoffe. Herstellung, Verarbeitung, Einsatz. Springer-Viehweg, Wiesbaden (2013)

    Google Scholar 

  25. Duthil, P.: Material Properties at Low Temperature. In: Hartmann, P. (ed.) Optical Glass. Society of Photo-Optical Instrumentation Engineers (2014)

    Google Scholar 

  26. Ezekiel, M.: Design of 3D-Printed Titanium Compliant Mechanisms. The 42nd Aerospace Mechanism Symposium, Greenbelt, MD (2014)

    Google Scholar 

  27. Merriam, E.: Stiffness Reduction Strategies for Additively Manufactured Compliant Mechanisms. Brigham Young University, Provo, Utah (2016)

    Google Scholar 

  28. Kohnke, P.: ANSYS Theory Reference. Release 10.0, Canonsburg, Pasadena (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Jahn .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2020 The Author(s)

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Jahn, P., Raatz, A. (2020). Numerical simulation and statistical analysis of a cascaded flexure hinge for use in a cryogenic working environment. In: Schüppstuhl, T., Tracht, K., Henrich, D. (eds) Annals of Scientific Society for Assembly, Handling and Industrial Robotics. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61755-7_8

Download citation