Skip to main content

Data Acquisition and Classification of Best Practices for the Configuration of Robot Applications

  • 1712 Accesses

Abstract

Despite the far-reaching technological developments in the field of robotics (e.g. lightweight robots), the degree of implementation of innovative solutions in industrial practice is still comparatively low. This applies in particular to inexperienced users from small and medium-sized companies (SME). To facilitate the transfer of robot applications into practice, an internet-based configurator has been developed within the ROBOTOP research project. The configurator comprises planning functions along the whole engineering process. With regard to these functions, industrially implemented best practices are a main focus within the concept phase. Furthermore, they form a foundation for all further planning steps. In this context, the term ‘best practice’ refers to successfully implemented industrial applications. The acquisition, structuring and integration of these best practices into the web platform constitute the core of this paper. In order to highlight the emerging considerable benefits for industrial end-users, the digital implementation of best practices within the framework of the ROBOTOP internet platform is presented in the last step. The continuous use of digital planning platforms can ultimately pave the way for a significant increase in the degree of implementation of innovative robot applications.

Keywords

  • Best practices
  • data acquisition
  • classification
  • robot configuration
  • Industry 4.0

References

  1. Deuse, J., Weisner, K., Hengstebeck, A., Busch, F.: Gestaltung von Produktionssystemen im Kontext von Industrie 4.0. In: Botthof, A., Hartmann, E.A. (eds.) Zukunft der Arbeit in Industrie 4.0, pp. 43–49. Springer Vieweg, Berlin (2014)

    Google Scholar 

  2. Verl, A., Fritsch, D., Winkler, B.: Hybride Systeme in der Montage. wt Werkstattstechnik online 99, 606–613 (2009)

    Google Scholar 

  3. Bauer, W., Bender, M., Braun, M., Rally, P., Scholtz, O.: Leichtbauroboter in der manuellen Montage - einfach einfach anfangen. IRB Mediendienstleistungen, Stuttgart (2016)

    Google Scholar 

  4. Hengstebeck, A., Barthelmey, A., Deuse, J.: Reconfiguration Assistance for Cyber-Physical Production Systems. In: Schüppstuhl, T., Tracht, K., Franke, J. (eds.) Tagungsband des 3. Kongresses Montage Handhabung Industrieroboter, pp. 177–186. Springer Vieweg, Berlin, Heidelberg (2018)

    Google Scholar 

  5. Bundesministerium für Wirtschaft und Technologie (BMWi): Industrielle Servicerobotik. Studie, vol. 4. LoeschHundLiepold, Berlin (2013)

    Google Scholar 

  6. Bransford, J.D., Stein, B.S.: The IDEAL Problem Solver. A guide for improving thinking, learning, and creativity, 2nd edn. Freeman, New York (1993)

    Google Scholar 

  7. Dietz, C.: Methode zum Abgleich der Produktstrukturgestaltung mit der Fertigungssystemgestaltung variantenreicher Produkte. Shaker, Aachen (2014)

    Google Scholar 

  8. Dekker, S.W.A., Woods, D.D.: MABA-MABA or Abracadabra? Progress on Human-Automation Co-ordination. Congition, Technology & Work 4, 240–244 (2002)

    Google Scholar 

  9. REFA Bundesverband e.V.: REFA Kompakt-Grundausbildung 2.0 - Das Basis-Know-How in Industrial Engineering. Band 1, vol. 1. Diesbach, Weinheim (2013)

    Google Scholar 

  10. Hartel, M., Lotter, B.: Planung und Bewertung von Montagesystemen. In: Lotter, B., Wiendahl, H.-P. (eds.) Montage in der industriellen Produktion: Ein Handbuch für die Praxis, pp. 365–388. Springer Vieweg, Berlin, Heidelberg (2012)

    Google Scholar 

  11. Schallow, J., Hartung, J., Deuse, J., Krappe, H., Staub, G.: Der Referenzprozess zur durchgängigen Produktionsplanung. ProduktDaten Journal 21, 55–59 (2014)

    Google Scholar 

  12. Dombrowski, U., Mielke, T.: Gestaltungsprinzipien Ganzheitlicher Produktionssysteme. In: Dombrowski, U., Mielke, T. (eds.) Ganzheitliche Produktionssysteme, pp. 25–169. Springer, Berlin, Heidelberg (2015)

    Google Scholar 

  13. Endsley, M.R., Kaber, D.B.: Level of automation effects on performance, situation awareness and workload in a dynamic control task. Ergonomics 42, 462–492 (1999)

    Google Scholar 

  14. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for Types and Levels of Human Interaction with Automation. IEEE Transactions on Systems, Man and Cybernetics 30, 286–297 (2000)

    Google Scholar 

  15. Weßkamp, V., Seckelmann, T., Barthelmey, A., Kaiser, M., Lemmerz, K., Glogowski, P., Kuhlenkötter, B., Deuse, J.: Development of a sociotechnical planning system for human-robot interaction in assembly systems focusing on small and medium-sized enterprises. In: Proceedings of the 52nd CIRP Conference on Manufacturing Systems (CMS), Ljubljana, 12.-14.06.2019, pp. 1–6. Elsevier (2019)

    Google Scholar 

  16. Beumelburg, K.: Fähigkeitsorientierte Montageablaufplanung in der direkten Mensch-Roboter-Kooperation. Jost-Jetter, Heimsheim (2005)

    Google Scholar 

  17. Bick, W.: Systematische Planung hybrider Montagesysteme unter besonderer Berücksichtigung der Ermittlung des optimalen Automatisierungsgrades. Springer, München (1992)

    Google Scholar 

  18. Säfsten, K., Winroth, M., Stahre, J.: The content and process of automation strategies. International Journal of Production Economics 110, 25–38 (2007)

    Google Scholar 

  19. Bauer, W., Rally, P., Scholtz, O.: Schnelle Ermittlung sinnvoller MRK-Anwendungen. ZWF 113, 554–559 (2018)

    Google Scholar 

  20. VDI: Montage- und Handhabungstechnik. Handhabungsfunktionen, Handhabungseinrichtungen; Begriffe, Definitionen, Symbole. VDI, Düsseldorf (VDI 2860) (1990)

    Google Scholar 

  21. Paul, R.P., Nof, S.Y.: Work methods measurement - a comparison between robot and human task performance. International Journal of Production Research 17, 277–303 (1979)

    Google Scholar 

  22. Ross, P.: Bestimmung des wirtschaftlichen Automatisierungsgrades von Montageprozessen in der frühen Phase der Montageplanung. Utz, München (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Hengstebeck .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2020 The Author(s)

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hoffmann, F., Hengstebeck, A., Deuse, J. (2020). Data Acquisition and Classification of Best Practices for the Configuration of Robot Applications. In: Schüppstuhl, T., Tracht, K., Henrich, D. (eds) Annals of Scientific Society for Assembly, Handling and Industrial Robotics. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61755-7_13

Download citation