Skip to main content

The Recent Research and Growth in Energy Efficiency in Cu2ZnSnS4 (CZTS) Solar Cells

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion
  • 902 Accesses

Abstract

Currently the energy harvesting by photoelectric conversion has been efficiently used in energy economics and renewable energy area. The development of solar cell technology is started from the first-generation silicon solar cell to the emerging fourth-generation “inorganics-in-organic” solar cell. Various solar absorber compounds have been used for solar cell manufacturing such as cadmium telluride (CdTe), copper indium gallium selenide (Cu2InGaS4, CIGS), copper indium gallium sulfur selenide (CIGSSe), copper zinc tin sulfide kesterite (Cu2ZnSnS4, CZTS), and copper zinc tin sulfide selenide (CZTSSe). These compounds have conversion efficiencies with some advantages and drawbacks. To overcome the drawbacks and achieve higher conversion efficiency, the efforts have been devoted. With some physical and chemical parametric changes, researchers have got better results in the last 10 years. In the present chapter, research and development on the Cu2ZnSnS4 thin film in the request of high-efficiency solar cells is discussed. The effect of various structural and compositional changes in the CZTS; different buffer layers such as cadmium sulfide (CdS), copper sulfide (CuS), zinc sulfide (ZnS), Indium(III) sulfide (In2S3), hybrid Indium(III) sulfide/cadmium sulfide (In2S3/CdS), etc. with interfaces doping into the host material of silver (Ag), sodium (Na), antimony (Sb), etc.; partial substitution of the elements from the host by cadmium (Cd) and selenium (Se); different synthesis; and post-treatments are thoroughly studied. Further, some challenges regarding improving the conversion efficiency of copper zinc tin sulfide (CZTS) solar cells and the future of the solar cell application are discussed.

Author Contribution

R.J. Deokate wrote the entire manuscript based on public domain information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T.G. Gutowski, S.B. Gershwin, T. Bounassisi, Proceedings of the IEEE International Symposium on Sustainable Systems and Technology, Washington, DC, 2010

    Google Scholar 

  2. BP Energy Economics, Energy consumption. www.bp.com. Accessed Feb 2017

  3. Independent Statistics and Analysis, U.S. Energy Information Administration www.eia.gov. Accessed Feb 2017

  4. R.T. Pierrehumbert, Concept warming the world. Nature 432, 677–677 (2004)

    Article  CAS  Google Scholar 

  5. J. Tyndall, On Radiation: The ‘Rede’ Lecture, Delivered in the Senate-House Before the University of Cambridge on Tuesday, May 16, 1865 (D. Appleton, New York, 1865)

    Google Scholar 

  6. H. Balat, C. Öz, Technical and economic aspects of carbon capture and storage – a review. Energy Explorer. Exploit. 25, 357–392 (2007)

    Article  CAS  Google Scholar 

  7. U. S. DOE (2001). http://earthobservatory.nasa.gov/Features/CarbonCycle/

  8. M. Aresta, A. Dibenedetto, Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans. 28, 2975–2992 (2007)

    Article  Google Scholar 

  9. K. Li, X. An, K.H. Park, M. Khraisheh, J. Tang, A critical review of CO2 photoconversion: catalysts and reactors. Catal. Today 224, 3–12 (2014)

    Article  CAS  Google Scholar 

  10. H. Khatib, IEA world energy outlook 2011 – a comment. Energy Policy 48, 737–743 (2012)

    Article  Google Scholar 

  11. N. Armaroli, V. Balzani, Towards an electricity-powered world. Energy Environ. Sci. 4, 3193–3222 (2011)

    Article  Google Scholar 

  12. N. Armaroli, V. Balzani, Energy for a Sustainable World. From the Oil Age to a Sun-Powered Future (Wiley-VCH, Weinheim, 2011)

    Google Scholar 

  13. BP Energy Economics, Statistical Review of World Energy. www.bp.com/statisticalreview. Accessed Feb 2017

  14. Reference Solar Spectral Irradiance: Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/. Accessed June 2014

  15. J. Duffie, W. Beckman, Solar Engineering of Thermal Processes (Wiley, Hoboken, 2006)

    Google Scholar 

  16. N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729–15735 (2006)

    Article  CAS  Google Scholar 

  17. World Energy Assessment Report: Energy and the Challenge of Sustainability (U. N. D. Program, United Nations, New York, 2003)

    Google Scholar 

  18. World Map of Global Horizontal irradiation. http://solargis.info/doc/_pics/freemaps/1000px/ghi/SolarGIS-Solar-map-World-map-en.png. Accessed June 2014

  19. M. Iqbal, An Introduction to Solar Radiation (Academic, Toronto, 1983)

    Google Scholar 

  20. F. Kasten, A.T. Young, Revised optical air mass tables and approximation formula. Appl. Opt. 28, 4735–4738 (1989)

    Article  CAS  Google Scholar 

  21. P. Wurfel, Physics of Solar Cells: From Principles to New Concepts (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005). ISSN 3-527-40428-7

    Book  Google Scholar 

  22. H.B. Gray, Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009)

    Article  CAS  Google Scholar 

  23. K.D.G.I. Jayawardena, L.J. Rozanski, C.A. Mills, M.J. Beliatis, N.A. Nismy, S.R.P. Silva, ‘Inorganics – in – organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale 5, 8411–8427 (2013)

    Article  CAS  Google Scholar 

  24. M.A. Green, Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog. Photovolt. Res. Appl. 9, 123–135 (2001)

    Article  CAS  Google Scholar 

  25. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4(7), 1301465 (1–5) (2013)

    Google Scholar 

  26. UNSW Newsroom, UNSW takes lead in the race for non-toxic, thin-film solar cells. http://newsroom.unsw.edu.au/news/science-tech/unsw-takes-lead-race-non-toxic-thin-film-solar-cells. Accessed Mar 2017

  27. W. Schäfer, R. Nitsche, Tetrahedral quaternary chalcogenides of the type Cu2II-IV-S4(Se4). Mater. Res. Bull. 9, 645–654 (1974)

    Article  Google Scholar 

  28. L.L. Baranowski, P. Zawadzki, S. Lany, E.S. Toberer, A. Zakutayev, A review of defects and disorder in multinarytetrahedrally bonded semiconductors. Semicond. Sci. Technol. 31, 123004–123019 (2016)

    Article  Google Scholar 

  29. K. Yu, E.A. Carter, Determining and controlling the stoichiometry of Cu2ZnSnS4 photovoltaics: the physics and its implications. Chem. Mater. 28(12), 4415–4420 (2016)

    Article  CAS  Google Scholar 

  30. S.Y. Chen, J.-H.H. Yang, X.G. Gong, A. Walsh, S.-H.H. Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 245204-1–245204-13 (2010)

    Article  Google Scholar 

  31. S. Singh, M. Brandon, P. Liu, F. Laffir, W. Redington, K.M. Ryan, Selective phase transformation of wurtzite Cu2ZnSn (SSe)4 nanocrystals into zinc blende and kesterite by solution and solid state transformations. Chem. Mater. 28(14), 5055–5062 (2016)

    Article  CAS  Google Scholar 

  32. I.D. Oleksyuk, I.V. Dudchar, L.V. Piskach, Phase equilibria in the Cu2S–ZnS–SnS2 system. J. Alloys Compd. 368, 135–143 (2004)

    Article  Google Scholar 

  33. M.I. Khalil, O. Atici, A. Lucotti, S. Binetti, A.L. Donne, L. Magagnin, CZTS absorber layer for thin film solar cells from electrodeposited metallic stacked precursors (Zn/Cu-Sn). Appl. Surf. Sci. 379, 91–97 (2016)

    Article  CAS  Google Scholar 

  34. K.V. Gurav, S.M. Pawar, S.W. Shin, M.P. Suryawanshi, G.L. Agawane, P.S. Patil, J.-H. Moon, J.H. Yun, J.H. Kim, Electrosynthesis of CZTS films by sulfurization of CZT precursor: effect of soft annealing treatment. Appl. Surf. Sci. 283, 74–80 (2013)

    Article  CAS  Google Scholar 

  35. C.-Y. Su, C.-Y. Chiu, J.-M. Ting, Cu2ZnSnS4 absorption layers with controlled phase purity. Sci. Rep. 5, 9291-1–9291-8 (2015)

    Google Scholar 

  36. J.J. Scragg, P.J. Dale, L.M. Peter, Towards sustainable materials for solar energy conversion: preparation and photoelectrochemical characterization of Cu2ZnSnS4. Electrochem. Commun. 10, 639–642 (2008)

    Article  CAS  Google Scholar 

  37. T. Shiyani, D. Raval, M.K. Patel, I. Mukhopadhyay, A. Ray, Effect of initial bath condition and post-annealing on co-electrodeposition of Cu2ZnSnS4. Mater. Chem. Phys. 171, 63–72 (2016)

    Article  CAS  Google Scholar 

  38. J. Tao, J. Liu, J. He, K. Zhang, J. Jiang, L. Sun, P. Yang, J. Chu, Synthesis and characterization of Cu2ZnSnS4 thin films by the sulfurization of co-electrodeposited Cu–Zn–Sn–S precursor layers for solar cell applications. RSC Adv. 4, 23977–23984 (2014)

    Article  CAS  Google Scholar 

  39. S. Kermadi, S. Sali, F.A. Ameur, L. Zougar, M. Boumaour, A. Toumiat, N.N. Melnik, D.W. Hewak, A. Duta, Effect of copper content and sulfurization process on optical, structural and electrical properties of ultrasonic spray pyrolyzed Cu2ZnSnS4 thin films. Mater. Chem. Phys. 169, 96–104 (2015)

    Article  Google Scholar 

  40. A.A. Barragan, H. Malekpour, S. Exarhos, A.A. Balandin, L. Mangolini, Grain-to-grain compositional variations and phase segregation in CZTS films. ACS Appl. Mater. Interfaces 8(35), 22971–22976 (2016)

    Article  Google Scholar 

  41. C. Malerba, M. Valentini, C.L. Azanza Ricardo, A. Rinaldi, E. Cappelletto, P. Scardi, A. Mittiga, Blistering in Cu2ZnSnS4 thin films: correlation with residual stresses. Mater. Des. 108, 725–735 (2016)

    Article  CAS  Google Scholar 

  42. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Development of CZTS-based thin film solar cells. Thin Solid Films 517, 2455–2460 (2009)

    Article  CAS  Google Scholar 

  43. A. Wangperawong, J.S. King, S.M. Herron, B.P. Tran, K.P. Okimoto, S.F. Bent, Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films 519, 2488–2492 (2011)

    Article  CAS  Google Scholar 

  44. J. He, L. Sun, K. Zhang, W. Wang, J. Jiang, Y. Chen, P. Yang, J. Chu, Effect of post-sulfurization on the composition, structure and optical properties of Cu2ZnSnS4 thin films deposited by sputtering from a single quaternary target. Appl. Surf. Sci. 264, 133–138 (2013)

    Article  CAS  Google Scholar 

  45. H. Araki, Y. Kubo, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Preparation of Cu2ZnSnS4 thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors. Phys. Status Solidi 6, 1266–1268 (2009)

    Article  CAS  Google Scholar 

  46. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 65, 141–148 (2001)

    Article  CAS  Google Scholar 

  47. G. Larramona, S. Bourdais, A. Jacob, C. Chone, T. Muto, Y. Cuccaro, B. Delatouche, C. Moisan, D. Pere, G. Dennler, 8.6% efficient CZTSSe solar cells sprayed from water-ethanol CZTS colloidal solutions. J. Phys. Chem. Lett. 5, 3763–3767 (2014)

    Article  CAS  Google Scholar 

  48. T.H. Nguyen, W. Septina, S. Fujikawa, F. Jiang, T. Harada, S. Ikeda, Cu2ZnSnS4 thin film solar cells with 5.8% conversion efficiency obtained by a facile spray pyrolysis technique. RSC Adv. 5, 77565–77571 (2015)

    Article  CAS  Google Scholar 

  49. X. Lin, J. Kavalakkatt, K. Kornhuber, S. Levcenko, M.C.L. Steiner, A. Ennaoui, Structural and optical properties of Cu2ZnSnS4 thin film absorbers from ZnS and Cu3SnS4 nanoparticle precursors. Thin Solid Films 535, 10–13 (2013)

    Article  CAS  Google Scholar 

  50. H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, Y. Zhang, Tunable band gap Cu2ZnSnS4xSe4(1− x) nanocrystals: experimental and first-principles calculations. CrystEngComm 13, 2222–2226 (2011)

    Article  CAS  Google Scholar 

  51. T. Washio, T. Shinji, S. Tajima, T. Fukano, T. Motohiro, K. Jimbo, H. Katagiri, 6% efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD. J. Mater. Chem. 22, 4021–4024 (2012)

    Article  CAS  Google Scholar 

  52. C. Gao, T. Schnabel, T. Abzieher, C. Krämmer, M. Powalla, H. Kalt, M. Hetterich, Cu2ZnSn(S, Se)4 solar cells based on chemical bath deposited precursors. Thin Solid Films 562, 621–624 (2014)

    Article  CAS  Google Scholar 

  53. M. Patel, I. Mukhopadhyay, A. Ray, Structural, optical and electrical properties of spray-deposited CZTS thin films under a non-equilibrium growth condition. J. Phys. D. Appl. Phys. 45, 445103–445113 (2012)

    Article  Google Scholar 

  54. S.A. Khalate, R.S. Kate, J.H. Kim, S.M. Pawar, R.J. Deokate, Effect of deposition temperature on the properties of Cu2ZnSnS4 (CZTS) thin films. Superlattice. Microst. 103, 335–342 (2017)

    Article  CAS  Google Scholar 

  55. M. Courel, J.A. Andrade-Arvizu, A. Guillén-Cervantes, M.M. Nicolás-Marín, F.A. Pulgarín-Agudelo, O. Vigil-Galán, Optimization of physical properties of spray-deposited Cu2ZnSnS4 thin films for solar cell applications. Mater. Des. 114, 515–520 (2017)

    Article  CAS  Google Scholar 

  56. J. Tao, J. Liu, L. Chen, H. Cao, X. Meng, Y. Zhang, Z. Chuanjun, L. Sun, P. Yang, J. Chu, 7.1% efficiency co–electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers. Green Chem. 18, 550–557 (2016)

    Article  CAS  Google Scholar 

  57. V.T. Tiong, Y. Zhang, J. Bell, H. Wang, Phase-selective hydrothermal synthesis of Cu2ZnSnS4 nanocrystals: the effect of the sulfur precursor. CrystEngComm 16, 4306–4313 (2014)

    Article  CAS  Google Scholar 

  58. J.W. Cho, A. Ismail, S.J. Park, W. Kim, S. Yoon, B.K. Min, Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications. ACS Appl. Mater. Interfaces 5, 4162–4165 (2013)

    Article  CAS  Google Scholar 

  59. W.C. Chen, V. Tunuguntla, M.-H. Chiu, L.-J. Li, I. Shown, C.-H. Lee, J.-S. Hwang, L.-C. Chen, K.-H. Chen, Co-solvent effect on microwave-assisted Cu2ZnSnS4 nanoparticles synthesis for thin film solar cell. Sol. Energy Mater. Sol. Cells 161, 416–423 (2017)

    Article  CAS  Google Scholar 

  60. X. Zhai, H. Jia, Y. Zhang, Y. Lei, J. Wei, Y. Gao, J. Chu, W. He, J.-J. Yin, Z. Zheng, In situ fabrication of Cu2ZnSnS4 nanoflake thin films on both rigid and flexible substrates. CrystEngComm 16, 6244–6249 (2014)

    Article  CAS  Google Scholar 

  61. S.C. Riha, S.J. Fredrick, J.B. Sambur, Y. Liu, A.L. Prieto, B.A. Parkinson, Photoelectrochemical characterization of nanocrystalline thin-film Cu2ZnSnS4 photocathodes. ACS Appl. Mater. Interfaces 3(1), 58–66 (2011)

    Article  CAS  Google Scholar 

  62. X. Jin, J. Li, G. Chen, C. Xue, W. Liu, C. Zhu, Preparation of Cu2ZnSnS4-based thin film solar cells by a combustion method. Sol. Energy Mater. Sol. Cells 146, 16–24 (2016)

    Article  CAS  Google Scholar 

  63. Y. Sun, Y. Zhang, H. Wang, M. Xie, K. Zong, H. Zheng, Y. Shu, J. Liu, H. Yan, M. Zhu, W.M. Lau, Novel non-hydrazine solution processing of earth-abundant Cu2ZnSn(S, Se)4 absorbers for thin-film solar cells. J. Mater. Chem. A 1, 6880–6887 (2013)

    Article  CAS  Google Scholar 

  64. M.P. Suryawanshi, P.S. Patil, S.W. Shin, K.V. Gurav, G.L. Agawane, M.G. Gang, J.H. Kim, A.V. Moholkar, The synergistic influence of anionic bath immersion time on the photoelectrochemical performance of CZTS thin films prepared by a modified SILAR sequence. RSC Adv. 4, 18537–18540 (2014)

    Article  CAS  Google Scholar 

  65. Y. Feng, B. Yu, G. Cheng, T. Lau, Z. Li, L. Yin, Q. Song, C. Yang, X. Xiao, Searching for a fabrication route of efficient Cu2ZnSnS4 solar cells by post-sulfuration of co-sputtered Sn-enriched precursors. J. Mater. Chem. C 3, 9650–9656 (2015)

    Article  CAS  Google Scholar 

  66. A. Cazzaniga, A. Crovettob, C. Yan, K. Sun, X. Hao, J.R. Estelrich, S. Canulescu, E. Stamate, N. Pryds, O. Hansen, J. Schou, Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition. Sol. Energy Mater. Sol. Cells 166, 91–99 (2017)

    Article  CAS  Google Scholar 

  67. S. Wozny, K. Wang, Weilie Zhou, Cu2ZnSnS4 nanoplate arrays synthesized by pulsed laser deposition with high catalytic activity as counter electrodes for dye-sensitized solar cell applications. J. Mater. Chem. A 1, 15517–15523 (2013)

    Article  CAS  Google Scholar 

  68. E. Garcia-Llamas, J.M. Merino, R. Gunder, K. Neldner, D. Greiner, A. Steigert, S. Giraldo, V. Izquierdo-Roca, E. Saucedo, M. León, S. Schorr, R. Caballero, Cu2ZnSnS4 thin film solar cells grown by fast thermal evaporation and thermal treatment. Sol. Energy 141, 236–241 (2017)

    Article  CAS  Google Scholar 

  69. Z.R. Mohammad, Modeling minority carrier’s recombination lifetime of the a-Si solar cell. Int. J. Renew. Energy Res. 2, 117–122 (2012)

    Google Scholar 

  70. Y. Yang, X. Kang, L. Huang, S. Wei, D. Pan, A general water-based precursor solution approach to deposit earth abundant Cu2ZnSn(S, Se)4 thin film solar cells. J. Power Sources 313, 15–20 (2016)

    Article  CAS  Google Scholar 

  71. K. Sun, F. Liu, C. Yan, F. Zhou, J. Huang, Y. Shen, R. Liu, X. Hao, Influence of sodium incorporation on kesterite Cu2ZnSnS4 solar cells fabricated on stainless steel substrates. Sol. Energy Mater. Sol. Cells 157, 565–571 (2016)

    Article  CAS  Google Scholar 

  72. X. Liu, J. Huang, F. Zhou, F. Liu, K. Sun, C. Yan, J.A. Stride, X. Hao, Understanding the key factors of enhancing phase and compositional controllability for 6% efficient pure-sulfide Cu2ZnSnS4 solar cells prepared from quaternary wurtzite nanocrystals. Chem. Mater. 28(11), 3649–3658 (2016)

    Article  CAS  Google Scholar 

  73. Y. Zhang, J. Han, C. Liao, Investigation on the role of sodium in Cu2ZnSnS4 film and the resulting phase evolution during sulfurization. Cryst. Eng. Comm. 18, 9026–9032 (2016)

    Article  CAS  Google Scholar 

  74. J. Kim, G.Y. Kim, W. Jo, K.-J. Yang, J.-H. Sim, D.-H. Kim, J.-K. Kang, Effects of Mo back-contact annealing on surface potential and carrier transport in Cu2ZnSnS4 thin film solar cells. RSC Adv. 6, 103337–103345 (2016)

    Article  CAS  Google Scholar 

  75. O.P. Singh, A. Sharma, K.S. Gour, S. Husale, V.N. Singh, Fast switching response of Na-doped CZTS photodetector from visible to NIR range. Sol. Energy Mater. Sol. Cells 157, 28–34 (2016)

    Article  CAS  Google Scholar 

  76. Y. Ren, J.J. Scragg, M. Edoff, J.K. Larsen, C. Platzer-Björkman, Evolution of Na-S(-O) compounds on the Cu2ZnSnS4 absorber surface and their effects on CdS thin film growth. ACS Appl. Mater. Interfaces 8, 18600–18607 (2016)

    Article  CAS  Google Scholar 

  77. D. Tiwari, T. Koehler, X. Lin, R. Harniman, I. Griffiths, L. Wang, D. Cherns, R. Klenk, D.J. Fermin, Cu2ZnSnS4 thin-films generated from a single solution-based precursor: the effect of Na and Sb doping. Chem. Mater. 28(14), 4991–4997 (2016)

    Article  CAS  Google Scholar 

  78. X. Zhang, M. Han, Z. Zeng, Y. Duan, The role of Sb in solar cell material Cu2ZnSnS4. J. Mater. Chem. A 5, 6606–6612 (2017)

    Article  CAS  Google Scholar 

  79. A. Ritscher, J. Just, O. Dolotko, S. Schorr, M. Lerch, A mechanochemical route to single phase Cu2ZnSnS4 powder. J. Alloys Compd. 670, 289–296 (2016)

    Article  CAS  Google Scholar 

  80. J. Li, H. Shen, W. Wang, J. Chen, H. Shang, Y. Li, Z. Zhai, Improvement of CZTSSe thin film solar cell by introducing a three-layer structure precursor. Mater. Lett. 172, 90–93 (2016)

    Article  CAS  Google Scholar 

  81. S.K. Samji, R. Maanam, M.S.R. Rao, Do defects get ordered in Cu2ZnSnS4? Scr. Mater. 117, 11–15 (2016)

    Article  CAS  Google Scholar 

  82. B. Bai, D. Kou, W. Zhou, Z. Zhou, Q. Tian, Y. Meng, S. Wu, Quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells: synthesis, passivation and ligand exchange. J. Power Sources 318, 35–40 (2016)

    Article  CAS  Google Scholar 

  83. O.P. Singh, K.S. Gour, R. Parmar, V.N. Singh, Sodium induced grain growth, defect passivation and enhancement in the photovoltaic properties of Cu2ZnSnS4 thin film solar cell. Mater. Chem. Phys. 177, 293–298 (2016)

    Article  CAS  Google Scholar 

  84. A. Sagna, K. Djessas, C. Sene, K. Medjnoun, S. Grillo, Close spaced vapor transport deposition of Cu2ZnSnS4 thin films: effect of iodine pressure. J. Alloys Compd. 685, 699–704 (2016)

    Article  CAS  Google Scholar 

  85. A. Lafond, C. Guillot-Deudon, J. Vidal, M. Paris, C. La, S. Jobic, Substitution of Li for Cu in Cu2ZnSnS4: toward wide band gap absorbers with low cation disorder for thin film solar cells. Inorg. Chem. 56(5), 2712–2721 (2017)

    Article  CAS  Google Scholar 

  86. A. Guchhait, Z. Su, Y.F. Tay, S. Shukla, W. Li, S.W. Leow, J.M.R. Tan, S. Lie, O. Gunawan, L.H. Wong, Enhancement of open circuit voltage of solution-processed Cu2ZnSnS4 solar cell with 7.2% efficiency by incorporation of silver. ACS Energy Lett. 1(6), 1256–1261 (2016)

    Article  CAS  Google Scholar 

  87. T.J. Huang, R.L. Guang-Ren, X. Yin, C. Tang, G. Qi, H. Gong, Effect of sulfide precursor selection on the nucleation, growth, and elemental composition of Cu2ZnSnS4 nanocrystals. Cryst. Growth Des. 17(1), 73–79 (2017)

    Article  CAS  Google Scholar 

  88. B.A. Williams, M.A. Smeaton, N.D. Trejo, L.F. Francis, E.S. Aydil, Effect of nanocrystal size and carbon on grain growth during annealing of copper zinc tin sulfide nanocrystal coatings. Chem. Mater. 29(4), 1676–1683 (2017)

    Article  CAS  Google Scholar 

  89. K. Liu, B. Yao, Y. Li, Z. Ding, H. Sun, Y. Jiang, G. Wang, D. Pan, A versatile strategy for fabricating various Cu2ZnSnS4 precursor solutions. J. Mater. Chem. C 5, 3035–3041 (2017)

    Article  CAS  Google Scholar 

  90. R.M. Valls, T.S. Lyubenova, I.C. Roures, L. Oliveira, D.F. Chiva, J.B.C. Castelló, Easy and low-cost aqueous precipitation method to obtain Cu2ZnSn (S, Se)4 thin layers. Sol. Energy Mater. Sol. Cells 161, 432–438 (2017)

    Article  Google Scholar 

  91. Y.-P. Lin, T.-E. Hsieh, Y.-C. Chen, K.-P. Huang, Characteristics of Cu2ZnSn (SxSe1−x)4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment. Sol. Energy Mater. Sol. Cells 162, 55–61 (2017)

    Article  CAS  Google Scholar 

  92. C. Yan, K. Sun, J. Huang, S. Johnston, F. Liu, B.P. Veettil, K. Sun, A. Pu, F. Zhou, J.A. Stride, M.A. Green, X. Hao, Beyond 11% efficient sulfide kesterite Cu2ZnxCd1−xSnS4 solar cell: effects of cadmium alloying. ACS Energy Lett. 2, 930–936 (2017)

    Article  CAS  Google Scholar 

  93. Y. Ren, M. Richter, J. Keller, A. Redinger, T. Unold, O. Donzel-Gargand, J.J. Scragg, C.P. Björkman, Investigation of the SnS/Cu2ZnSnS4 interfaces in kesterite thin-film solar cells. ACS Energy Lett. 2, 976–981 (2017)

    Article  CAS  Google Scholar 

  94. M.H. Sayed, J. Schoneberg, J. Parisi, L. Gütay, Improvement of the structural and electronic properties of CZTSSe solar cells from spray pyrolysis by a CuGe seed layer. RSC Adv. 7, 20406–20411 (2017)

    Article  CAS  Google Scholar 

  95. M. Courel, E. Valencia-Resendiz, J.A. Andrade-Arvizu, E. Saucedo, O. Vigil-Galán, Towards understanding poor performances in spray-deposited Cu2ZnSnS4 thin film solar cells. Sol. Energy Mater. Sol. Cells 159, 151–158 (2017)

    Article  CAS  Google Scholar 

  96. T.M. Ng, M.T. Weller, G.P. Kissling, L.M. Peter, P. Dale, F. Babbe, J. de Wild, B. Wenger, H.J. Snaith, D. Lane, Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals. J. Mater. Chem. A 5, 1192–1200 (2017)

    Article  CAS  Google Scholar 

  97. P. Liu, S. Singh, G. Bree, K.M. Ryan, Complete assembly of Cu2ZnSnS4 (CZTS) nanorods at substrate interfaces using a combination of self and directed organisation. Chem. Commun. 52, 11587–11590 (2016)

    Article  CAS  Google Scholar 

  98. J. Fu, Q. Tian, Z.-J. Zhou, D. Kou, Y. Meng, W.-H. Zhou, S. Wu, Improving the performance of solution-processed Cu2ZnSn(S, Se)4 photovoltaic materials by Cd2+ substitution. Chem. Mater. 28(16), 5821–5828 (2016)

    Article  CAS  Google Scholar 

  99. Z. Wang, S. Elouatik, G.P. Demopoulos, Understanding the phase formation kinetics of nano-crystalline kesterite deposited on mesoscopic scaffold via in-situ multi-wavelength Raman-monitored annealing. Phys. Chem. Chem. Phys. 18, 29435–29446 (2016)

    Article  CAS  Google Scholar 

  100. A. Fairbrother, X. Fontané, V. Izquierdo-Roca, M. Espíndola-Rodríguez, S. López-Marino, M. Placidi, L. Calvo-Barrio, A. Pérez-Rodríguez, E. Saucedo, On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks. Sol. Energy Mater. Sol. Cells 112, 97–105 (2013)

    Article  CAS  Google Scholar 

  101. W. Wang, H. Shen, L.H. Wong, H. Yao, Z. Su, Y. Li, Preparation of high-efficiency Cu2ZnSn(S, Se)4 solar cells from novel non-toxic hybrid ink. J. Power Sources 335, 84–90 (2016)

    Article  CAS  Google Scholar 

  102. O.A.M. Abdelraouf, N.K. Allam, Nanostructuring for enhanced absorption and carrier collection in CZTS based solar cells: coupled optical and electrical modeling. Opt. Mater. 54, 84–88 (2016)

    Article  CAS  Google Scholar 

  103. W. Xiao, J.N. Wang, J.W. Wang, G.J. Huang, L. Cheng, L.J. Jiang, L.G. Wang, Structural and electronic properties of the heterointerfaces for Cu2ZnSnS4 photovoltaic cells: a density-functional theory study. Phys. Chem. Chem. Phys. 18, 12029–12034 (2016)

    Article  CAS  Google Scholar 

  104. A. Ritscher, M. Hoelzel, M. Lerch, The order-disorder transition in Cu2ZnSnS4 – a neutron scattering investigation. J. Solid-State Chem. 238, 68–73 (2016)

    Article  CAS  Google Scholar 

  105. A. Irkhina, S. Levcenko, V. Hinrichs, P. Plate, T. Unold, Metal acetate-based synthesis of small-sized Cu2ZnSnS4 nanocrystals: effect of injection temperature and synthesis time. RSC Adv. 7, 11752–11760 (2017)

    Article  CAS  Google Scholar 

  106. H.R. Jung, S.W. Shin, M.P. Suryawanshi, S.J. Yeo, J.H. Yun, J.H. Moon, J.H. Kim, Phase evolution pathways of kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 thin films during the annealing of sputtered Cu-Sn-Zn metallic precursors. Sol. Energy 145, 2–12 (2017)

    Article  CAS  Google Scholar 

  107. K.-J. Kim, C. Pan, S. Bansal, R. Malhotra, D.-H. Kim, C.-H. Chang, Scalably synthesized environmentally benign, aqueous-based binary nanoparticle inks for Cu2ZnSn(S, Se)4 photovoltaic cells achieving over 9% efficient. Sustain. Energy Fuels 1, 267–274 (2017)

    Article  CAS  Google Scholar 

  108. X. Liu, J. Huang, F. Zhou, F. Liu, J.A. Stride, X. Hao, Spatial grain growth and composition evolution during sulfurizing metastable wurtzite Cu2ZnSnS4 nanocrystal-based coatings. Chem. Mater. 29(5), 2110–2121 (2017)

    Article  CAS  Google Scholar 

  109. R. Ma, F. Yang, S. Li, X. Zhang, X. Li, S. Cheng, Z. Liu, Fabrication of Cu2ZnSn(S, Se)4 (CZTSSe) absorber films based on solid-phase synthesis and blade coating processes. Appl. Surf. Sci. 368, 8–15 (2016)

    Article  CAS  Google Scholar 

  110. A.I. Inamdar, S. Lee, K.-Y. Jeon, C.H. Lee, S.M. Pawar, R.S. Kalubarme, C.J. Park, H. Im, W. Jung, H. Kim, Optimized fabrication of sputter deposited Cu2ZnSnS4 (CZTS) thin films. Sol. Energy 91, 196–203 (2013)

    Article  CAS  Google Scholar 

  111. Z. Xiao, B. Yao, Y. Li, Z. Ding, Z.-M. Gao, H. Zhao, L. Zhang, Z. Zhang, Y. Sui, G. Wang, Influencing mechanism of the selenization temperature and time on the power conversion efficiency of Cu2ZnSn(S, Se)4-based solar cells. ACS Appl. Mater. Interfaces 8(27), 17334–17342 (2016)

    Article  CAS  Google Scholar 

  112. C. Li, B. Yao, Y. Li, Z. Ding, H. Zhao, L. Zhang, Z. Zhang, Impact of sequential annealing step on the performance of Cu2ZnSn(S, Se)4 thin film solar cells. Superlattice. Microst. 95, 149–158 (2016)

    Article  CAS  Google Scholar 

  113. S.-Y. Li, C. Hägglund, Y. Ren, J.J. Scragg, J.K. Larsen, C. Frisk, K. Rudisch, S. Englund, C. Platzer-Björkman, Optical properties of reactively sputtered Cu2ZnSnS4 solar absorbers determined by spectroscopic ellipsometry and spectrophotometry. Sol. Energy Mater. Sol. Cells 149, 170–178 (2016)

    Article  CAS  Google Scholar 

  114. S. Gupta, T.J. Whittles, Y. Batra, V. Satsangi, S. Krishnamurthy, V.R. Dhanak, B.R. Mehta, A low-cost, sulfurization free approach to control optical and electronic properties of Cu2ZnSnS4 via precursor variation. Sol. Energy Mater. Sol. Cells 157, 820–830 (2016)

    Article  CAS  Google Scholar 

  115. D. Nam, S. Cho, J.-H. Sim, K.-J. Yang, D.-H. Son, D.-H. Kim, J.-K. Kang, M.-S. Kwon, C.-W. Jeon, H. Cheong, Solar conversion efficiency and distribution of ZnS secondary phase in Cu2ZnSnS4 solar cells. Sol. Energy Mater. Sol. Cells 149, 226–231 (2016)

    Article  CAS  Google Scholar 

  116. M. Dimitrievska, F. Boero, A.P. Litvinchuk, S. Delsante, G. Borzone, A.P. Rodriguez, V. Izquierdo-Roca, Structural polymorphism in “kesterite” Cu2ZnSnS4: Raman spectroscopy and first-principles calculations analysis. Inorg. Chem. 56(6), 3467–3474 (2017)

    Article  CAS  Google Scholar 

  117. T.R. Rana, N.M. Shinde, J.H. Kim, Novel chemical route for chemical bath deposition of Cu2ZnSnS4 (CZTS) thin films with stacked precursor thin films. Mater. Lett. 162, 40–43 (2016)

    Article  CAS  Google Scholar 

  118. K. Rawat, H.-J. Kim, P.K. Shishodia, Synthesis of Cu2ZnSnS4 nanoparticles and controlling the morphology with polyethylene glycol. Mater. Res. Bull. 77, 84–90 (2016)

    Article  CAS  Google Scholar 

  119. Y. Huang, G. Li, Q. Fan, M. Zhang, Q. Lan, X. Fan, Z. Zhou, C. Zhang, Facile solution deposition of Cu2ZnSnS4 (CZTS) nano-worm films on FTO substrates and its photoelectrochemical property. Appl. Surf. Sci. 28, 148–155 (2016)

    Article  Google Scholar 

  120. J.H.N. Tchognia, B. Hartiti, A. Ridah, J.-M. Ndjaka, P. Thevenin, Application of Taguchi approach to optimize the sol-gel process of the quaternary Cu2ZnSnS4 with good optical properties. Opt. Mater. 57, 85–92 (2016)

    Article  Google Scholar 

  121. M. Espindola-Rodriguez, Y. Sanchez, S. L’opez-Marino, D. Sylla, M. Placidi, M. Neuschitzer, H. Xie, V. Izquierdo-Roca, O. Vigil-Galan, E. Saucedo, Selenization of Cu2ZnSnS4 thin films obtained by pneumatic spray pyrolysis. J. Anal. Appl. Pyrolysis 120, 45–51 (2016)

    Article  CAS  Google Scholar 

  122. S.Y. Wei, Y.C. Liao, C.-H. Hsu, C.-H. Cai, W.-C. Huang, M.-C. Huang, C.-H. Lai, Achieving high-efficiency Cu2ZnSn(S, Se)4 solar cells by non-toxic aqueous ink: defect analysis and electrical modeling. Nano Energy 26, 74–82 (2016)

    Article  CAS  Google Scholar 

  123. R. Liu, M. Tan, L. Xu, X. Zhang, J. Chen, X. Tang, Preparation of high-quality Cu2ZnSnS4 thin films for solar cells via the improvement of sulfur partial pressure using a static annealing sulfurization approach. Sol. Energy Mater. Sol. Cells 157, 221–228 (2016)

    Article  CAS  Google Scholar 

  124. Y. Sun, Z. Hu, J. Zhang, L. Wang, C. Wu, J. Xu, A top-down strategy to synthesize wurtzite Cu2ZnSnS4 nanocrystals by green chemistry. Chem. Commun. 52, 9821–9824 (2016)

    Article  CAS  Google Scholar 

  125. S.-L. Chen, J. Tao, H.-J. Tao, Y.-Z. Shen, T. Wang, L. Pan, High-performance and low-cost dye-sensitized solar cells based on kesterite Cu2ZnSnS4 nanoplate arrays on a flexible carbon cloth cathode. J. Power Sources 330, 28–36 (2016)

    Article  CAS  Google Scholar 

  126. R. Tang, Z. Xie, S. Zhou, Y. Zhang, Z. Yuan, L. Zhang, L. Yin, Cu2ZnSnS4 nanoparticle sensitized metal-organic framework derived mesoporous TiO2 as photoanodes for high-performance dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8(34), 22201–22212 (2016)

    Article  CAS  Google Scholar 

  127. K.-C. Wang, H.-R. Hsu, H.-S. Chen, Study of surface sulfurization of Cu2ZnSn(S, Se)4 thin film solar cell by sequential H2Se-selenization/H2S-sulfurization. Sol. Energy Mater. Sol. Cells 163, 31–37 (2017)

    Article  CAS  Google Scholar 

  128. K.J. Yang, J.H. Sim, D.-H. Son, D.-H. Jeon, D.K. Hwang, D. Nam, H. Cheong, S.Y. Kim, J.H. Kim, D.-H. Kim, J.-K. Kang, Comparison of chalcopyrite and kesterite thin-film solar cells. J. Ind. Eng. Chem. 45, 78–84 (2017)

    Article  Google Scholar 

  129. T. Gershon, T. Gokmen, O. Gunawan, R. Haight, S. Guha, B. Shin, Understanding the relationship between Cu2ZnSn(S, Se)4 material properties and device performance. MRS Commun. 4, 159–170 (2014)

    Article  CAS  Google Scholar 

  130. H.J. Chen, S.-W. Fu, S.-H. Wu, H.-T. Wu, C.-F. Shih, Comparative study of self-constituent buffer layers (CuS, SnS, ZnS) for synthesis Cu2ZnSnS4 thin films. Mater. Lett. 169, 126–130 (2016)

    Article  CAS  Google Scholar 

  131. C. Yan, F. Liu, K. Sun, N. Song, J.A. Stride, F. Zhou, X. Hao, M. Green, Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers. Sol. Energy Mater. Sol. Cells 144, 700–706 (2016)

    Article  CAS  Google Scholar 

  132. O. Gunawan, T. Gokmen, D.B. Mitzi, Suns-Voc characteristics of high-performance kesterite solar cells. J. Appl. Phys. 116, 084504-1–084504-9 (2014)

    Article  Google Scholar 

  133. F. Jiang, C. Ozaki, Gunawan, T. Harada, Z. Tang, T. Minemoto, Y. Nose, S. Ikeda, Effect of indium doping on surface optoelectrical properties of Cu2ZnSnS4 photoabsorber and interfacial/photovoltaic performance of cadmium free In2S3/Cu2ZnSnS4 heterojunction thin film solar cell. Chem. Mater. 28(10), 3283–3291 (2016)

    Article  CAS  Google Scholar 

  134. V.R. Reddy, V. Janardhanam, J. Won, C.-J. Choi, Microstructural, electrical and frequency-dependent properties of Au/p-Cu2ZnSnS4/n-GaN heterojunction. J. Colloid Interface Sci. 499, 180–188 (2017)

    Article  Google Scholar 

  135. Y. Ren, N. Ross, J.K. Larsen, K. Rudisch, J.J.S. Scragg, C. Platzer-Björkman, Evolution of Cu2ZnSnS4 during non-equilibrium annealing with quasi-in-situ monitoring of sulfur partial pressure. Chem. Mater. 29(8), 3713–3722 (2017)

    Article  CAS  Google Scholar 

  136. X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D.B. Mitzi, M. Green, The current status and future prospects of kesterite solar cells: a brief review. Prog. Photovolt. 24, 879–898 (2016)

    Article  Google Scholar 

  137. S.K. Wallace, D.B. Mitzi, A. Walsh, The steady rise of kesterite solar cells. ACS Energy Lett. 2, 776–779 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author is very thankful to Springer Nature for the invitation to contribute a chapter in the book Nanostructured Materials for Next-Generation Energy Storage and Conversion Vol 4: Photovoltaic and Solar Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Deokate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deokate, R.J. (2019). The Recent Research and Growth in Energy Efficiency in Cu2ZnSnS4 (CZTS) Solar Cells. In: Atesin, T.A., Bashir, S., Liu, J.L. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59594-7_6

Download citation

Publish with us

Policies and ethics