Skip to main content

Metal-Based Chalcogenide Anode Materials for Lithium-Ion Batteries

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion
  • 1542 Accesses

Abstract

Rechargeable lithium-ion batteries (LIBs) have become state-of-art and are widely used in portable electronic devices and electric vehicles. With the development of materials and batteries technology, the performance of batteries has achieved enormous progress since its commercialization in the early 1990s. Recently, we saw this development slow down, as it is nearing the theoretical limit of the present system. A new battery system is necessary to meet the rigorous demands of high energy density. Under this circumstance, the innovation of anode materials is expected to be a promising way to remarkably increase the capacity of lithium-ion batteries. Metal-based chalcogenide (MXs, M = Sn, Mo, Fe, or Ge; X = O, S or Se) is a promising material for the anode of lithium-ion batteries (LIBs), because of their higher theoretical capacity when compared to conventional carbonaceous anodes. However, the wide application of chalcogenide anode in rechargeable battery is still hindered by the low efficiency and poor cycle performance caused by a large volume change during fully discharge and charge. Recently, there has been much interest in using nanostructured and carbon composite method in lithium-ion batteries to alleviate their inherent drawback. This chapter will provide an overview of the chalcogenide anode materials which are being studied experimentally in order to develop next-generation anodes for high-performance lithium-ion batteries.

Author Contribution: Q. Tang and Q. Jiang wrote this chapter. J. Wu. and X. Liu provided the relevant instruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Aurbach, B. Markovsky, I. Weissman, et al., On the correlation between surface chemistry and performance of graphite negative electrodes for Li-ion batteries. Electrochim. Acta 45, 67–86 (1999). https://doi.org/10.1016/S0013-4686(99)00194-2

    Article  CAS  Google Scholar 

  2. R. Fong, U. Von Sacken, J.R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1999). https://doi.org/10.1149/1.2086855

    Article  Google Scholar 

  3. R. Yazami, Nanomaterials for lithium-ion batteries: fundamentals and applications (Pan Stanford, Danvers, 2014)

    Google Scholar 

  4. C.K. Chan, H. Peng, G. Liu, et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). https://doi.org/10.1038/nnano.2007.411

    Article  CAS  Google Scholar 

  5. Z. Li, J. Ding, D. Mitlin, Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc. Chem. Res. 48, 1657–1665 (2015). https://doi.org/10.1021/acs.accounts.5b00114

    Article  CAS  Google Scholar 

  6. Y. Hamon, T. Brousse, F. Jousse, et al., Aluminum negative electrode in lithium-ion batteries. J. Power Sources 97, 185–187 (2001). https://doi.org/10.1016/s0378-7753(01)00616-4

    Article  Google Scholar 

  7. D. Larcher, S. Beattie, M. Morcrette, et al., Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 17, 3759–3772 (2007). https://doi.org/10.1039/B705421C

    Article  CAS  Google Scholar 

  8. C.K. Chan, X.F. Zhang, Y. Cui, High capacity Li-ion battery anodes using Ge nanowires. Nano Lett. 8, 307–309 (2008). https://doi.org/10.1021/nl0727157

    Article  CAS  Google Scholar 

  9. L. Hu, X.M. Lin, J.T. Mo, et al., Lead-based metal-organic framework with stable Lithium anodic performance. Inorg. Chem. 56, 4289–4295 (2017). https://doi.org/10.1021/acs.inorgchem.6b02663

    Article  CAS  Google Scholar 

  10. O. Crosnier, X. Devaux, T. Brousse, et al., Influence of particle size and matrix in “metal” anodes for Li-ion cells. J. Power Sources 97, 188–190 (2001). https://doi.org/10.1016/s0378-7753(01)00617-6

    Article  Google Scholar 

  11. T. Gao, F. Han, Y. Zhu, et al., Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Adv. Energy Mater. 5, 1401507 (2015). https://doi.org/10.1002/aenm.201401507

    Article  CAS  Google Scholar 

  12. Y. Idota, T. Kubota, A. Matsufuji, et al., Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276, 1395–1397 (1997). https://doi.org/10.1126/science.276.5317.1395

    Article  CAS  Google Scholar 

  13. C. Ataca, H. Sahin, S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012). https://doi.org/10.1021/jp212558p

    Article  CAS  Google Scholar 

  14. Z. Hu, Q. Liu, S.L. Chou, et al., Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater., 1700606 (2017). https://doi.org/10.1002/adma.201700606

    Article  Google Scholar 

  15. K. Kravchyk, L. Protesescu, M. Bodnarchuk, et al., Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J. Am. Chem. Soc. 135, 4199–4202 (2013). https://doi.org/10.1021/ja312604r

    Article  CAS  Google Scholar 

  16. J. Qin, C. He, N. Zhao, et al., Graphene networks anchored with Sn@graphene as a lithium-ion battery anode. ACS Nano 8, 1728–1738 (2014). https://doi.org/10.1021/nn406105n

    Article  CAS  Google Scholar 

  17. Z. Wang, D. Luan, F. Boey, X. Lou, Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J. Am. Chem. Soc. 133, 4738–4741 (2011). https://doi.org/10.1021/ja2004329

    Article  CAS  Google Scholar 

  18. H. Ying, S. Zhang, Z. Meng, Z. Sun, W. Han, Ultrasmall Sn nanodots embedded inside N-doped carbon micro cages as high-performance lithium and sodium ion battery anodes. J. Mater. Chem. A 5, 8334–8342 (2017). https://doi.org/10.1039/C7TA01480E

    Article  CAS  Google Scholar 

  19. Y. Yu, L. Gu, C. Zhu, P. Van Aken, J. Maier, Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J. Am. Chem. Soc. 131, 15984–15985 (2009). https://doi.org/10.1021/ja906261c

    Article  CAS  Google Scholar 

  20. Y. Xu, Q. Liu, Y. Zhu, Y. Liu, A. Langrock, M. Zachariah, C. Wang, Uniform nano-Sn/C composite anodes for lithium-ion batteries. Nano Lett. 13, 470–474 (2013). https://doi.org/10.1021/nl303823k

    Article  CAS  Google Scholar 

  21. L. Cui, J. Shen, F. Cheng, et al., SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. J. Power Sources 196, 2195–2201 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.075

    Article  CAS  Google Scholar 

  22. F. Huang, X. Lu, Y. Zhang, X. Luo, C. Yu, R. Wu, A new composite, Co--Sn metal oxide anode for lithium-ion batteries. Mater. Sci. 27, 0137–1339 (2009)

    Google Scholar 

  23. M. Zhang, T. Wang, G. Cao, Promises and challenges of tin-based compounds as anode materials for lithium-ion batteries. Int. Mater. Rev. 60, 330–352 (2015). https://doi.org/10.1179/1743280415Y.0000000004

    Article  CAS  Google Scholar 

  24. K. Xu, A. Cresce, Interfacing electrolytes with electrodes in Li-ion batteries. J. Mater. Chem. 21, 9849–9864 (2011). https://doi.org/10.1039/c0jm04309e

    Article  CAS  Google Scholar 

  25. C. Kim, M. Noh, M. Choi, J. Cho, B. Park, Critical size of a nano SnO2 electrode for a Li-secondary battery. Chem. Mater. 17, 3297–3301 (2005). https://doi.org/10.1021/cm048003o

    Article  CAS  Google Scholar 

  26. M. Park, G. Wang, Y. Kang, D. Wexler, S. Dou, H. Liu, Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. 119, 764–767 (2007). https://doi.org/10.1002/ange.200603309

    Article  Google Scholar 

  27. K. Zhao, L. Zhang, R. Xia, Y. Dong, W. Xu, C. Niu, L. Mai, et al., SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 12, 588–594 (2016). https://doi.org/10.1002/smll.201502183

    Article  CAS  Google Scholar 

  28. J. Sun, L. Xiao, S. Jiang, G. Li, Y. Huang, J. Geng, Fluorine-doped SnO2@graphene porous composite for high capacity lithium-ion batteries. Chem. Mater. 27, 4594–4603 (2015). https://doi.org/10.1021/acs.chemmater.5b00885

    Article  CAS  Google Scholar 

  29. P. Lippens, M. El Khalifi, M. Womes, Electronic structures of SnS and SnS2. Phys. Status Solidi B 254, 1–14 (2017). https://doi.org/10.1002/pssb.201600194

    Article  CAS  Google Scholar 

  30. T. Kim, C. Kim, D. Son, M. Choi, B. Park, Novel SnS2-nanosheet anodes for lithium-ion batteries. J. Power Sources 167, 529–535 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.040

    Article  CAS  Google Scholar 

  31. M. He, L. Yuan, Y. Huang, Acetylene black incorporated three-dimensional porous SnS2 nanoflowers with high performance for lithium storage. RSC Adv. 3, 3374–3383 (2013). https://doi.org/10.1039/c2ra22764a

    Article  CAS  Google Scholar 

  32. P. Lee, G. Said, R. Davis, T. Lim, On the optical properties of some layer compounds. J. Phys. Chem. Solids 30, 2719–2729 (1969). https://doi.org/10.1016/0022-3697(69)90045-6

    Article  CAS  Google Scholar 

  33. G. Domingo, R. Itoga, C. Kannewurf, Fundamental optical absorption in Sn S2 and SnSe2. Phys. Rev. 143, 536–541 (1966). https://doi.org/10.1103/PhysRev.143.536

    Article  CAS  Google Scholar 

  34. S. Hwang, Z. Yao, L. Zhang, M. Fu, K. He, L. Mai, et al., Multistep lithiation of tin sulfide: an investigation using in situ electron microscopy. ACS Nano 12, 3638–3645 (2018). https://doi.org/10.1021/acsnano.8b00758

    Article  CAS  Google Scholar 

  35. K. Yin, M. Zhang, Z. Hood, J. Pan, Y. Meng, M. Chi, Self-assembled framework formed during lithiation of SnS2 nanoplates revealed by in situ electron microscopy. Acc. Chem. Res. 50, 1513–1520 (2017). https://doi.org/10.1021/acs.accounts.7b00086

    Article  CAS  Google Scholar 

  36. J. Seo, J. Jang, S. Park, C. Kim, B. Park, J. Cheon, Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium-ion batteries. Adv. Mater. 20, 4269–4273 (2008). https://doi.org/10.1002/adma.200703122

    Article  CAS  Google Scholar 

  37. T. Zhou, W. Pang, C. Zhang, J. Yang, Z. Chen, H. Liu, Z. Guo, Enhanced sodium-ion battery performance by a structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8, 8323–8333 (2014). https://doi.org/10.1021/nn503582c

    Article  CAS  Google Scholar 

  38. D. Youn, S. Stauffer, P. Xiao, H. Park, Y. Nam, A. Dolocan, C. Mullins, et al., Simple synthesis of nanocrystalline tin sulfide/N-doped reduced graphene oxide composites as lithium-ion battery anodes. ACS Nano 10, 10778–10788 (2016). https://doi.org/10.1021/acsnano.6b04214

    Article  CAS  Google Scholar 

  39. Q. Li, H. Liu, Z. Yao, J. Cheng, T. Li, Y. Li, V. Dravid, Electrochemistry of selenium with sodium and lithium: kinetics and reaction mechanism. ACS Nano 10, 8788–8795 (2016). https://doi.org/10.1021/acsnano.6b04519

    Article  CAS  Google Scholar 

  40. Q. Cai, Y. Li, Q. Li, J. Xu, B. Gao, X. Zhang, P. Chu, Freestanding hollow double-shell Se@CNx nanobelts as large-capacity and high-rate cathodes for Li-Se batteries. Nano Energy 32, 1–9 (2017). https://doi.org/10.1016/j.nanoen.2016.12.010

    Article  CAS  Google Scholar 

  41. J. Choi, J. Jin, I. Jung, J. Kim, H. Kim, S. Son, SnSe2 nanoplate-graphene composites as anode materials for lithium-ion batteries. Chem. Commun. 47, 5241–5243 (2011). https://doi.org/10.1039/c1cc10317b

    Article  CAS  Google Scholar 

  42. K. Chen, X. Wang, G. Wang, B. Wang, X. Liu, J. Bai, H. Wang, A new generation of high-performance anode materials with semiconductor heterojunction structure of SnSe/SnO2@Gr in lithium-ion batteries. Chem. Eng. J. 347, 552–562 (2018). https://doi.org/10.1016/j.cej.2018.04.125

    Article  CAS  Google Scholar 

  43. X. Wang, D. Chen, Z. Yang, X. Zhang, C. Wang, J. Chen, M. Xue, et al., Novel metal chalcogenide SnSSe as a high-capacity anode for sodium-ion batteries. Adv. Mater. 28, 8645–8650 (2016). https://doi.org/10.1002/adma.201603219

    Article  CAS  Google Scholar 

  44. Q. Tang, Y. Cui, J. Wu, D. Qu, A. Baker, Y. Ma, Y. Liu, et al., Ternary tin selenium sulfide (SnSe0.5S0.5) nanoalloy as the high-performance anode for lithium-ion and sodium-ion batteries. Nano Energy 41, 377–386 (2017). https://doi.org/10.1016/j.nanoen.2017.09.052

    Article  CAS  Google Scholar 

  45. Y. Zhang, J. Yang, Y. Zhang, C. Li, W. Huang, Q. Yan, X. Dong, Fe2O3/SnSSe hexagonal nanoplates as lithium-ion batteries anode. ACS Appl. Mater. Interfaces 10, 12722–12730 (2018). https://doi.org/10.1021/acsami.8b01537

    Article  CAS  Google Scholar 

  46. T. Wang, L. Yin, R. Zhao, C. Xia, X. Zhao, Y. An, X. Dai, et al., First-principles study of monolayer SnS2(1−x) Se2x alloys as anode materials for Lithium-ion batteries. Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.06.030

    Article  CAS  Google Scholar 

  47. W. Xie, S. Populoh, X. Xiao, L. Sagarna, Y. Liu, A. Weidenkaff, Thermoelectric study of crossroads material MnTe via sulfur doping. J. Appl. Phys. 115, 103707 (2014). https://doi.org/10.1063/1.4868584

    Article  CAS  Google Scholar 

  48. R. Mehta, C. Karthik, W. Jiang, B. Singh, Y. Shi, R. Siegel, G. Ramanath, High electrical conductivity antimony selenide nanocrystals and assemblies. Nano Lett. 10, 4417–4422 (2010). https://doi.org/10.1021/nl1020848

    Article  CAS  Google Scholar 

  49. P. Perumal, R. Ulaganathan, R. Sankar, Y. Liao, T. Sun, M. Chu, Y. Chen, et al., Ultra-thin layered ternary single crystals [Sn (SxSe1−x)2] with bandgap engineering for high-performance phototransistors on versatile substrates. Adv. Funct. Mater. 26, 3630–3638 (2016). https://doi.org/10.1002/adfm.201600081

    Article  CAS  Google Scholar 

  50. Q. Tang, H. Su, Y. Cui, A. Baker, Y. Liu, J. Lu, D. Qu, et al., Ternary tin-based chalcogenide nanoplates as a promising anode material for lithium-ion batteries. J. Power Sources 379, 182–190 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.051

    Article  CAS  Google Scholar 

  51. L. Wang, Z. Xu, W. Wang, X. Bai, Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 136, 6693–6697. https://doi.org/10.1021/ja501686w

    Article  CAS  Google Scholar 

  52. C. George, A. Morris, M. Modarres, M. De Volder, Structural evolution of electrochemically lithiated MoS2 nanosheets and the role of carbon additive in Li-ion batteries. Chem. Mater. 28, 7304–7310 (2016). https://doi.org/10.1021/acs.chemmater.6b02607

    Article  CAS  Google Scholar 

  53. N. Sharma, G. Du, A. Studer, Z. Guo, V. Peterson, In-situ neutron diffraction study of the MoS2 anode using a custom-built Li-ion battery. Solid State Ionics 199, 37–43 (2011). https://doi.org/10.1016/j.ssi.2011.07.015

    Article  CAS  Google Scholar 

  54. L. Zhang, D. Sun, J. Kang, J. Feng, H. Bechtel, L. Wang, J. Guo, et al., Electrochemical reaction mechanism of the MoS2 electrode in a lithium-ion cell revealed by in situ and operando X-ray absorption spectroscopy. Nano Lett. 18, 1466–1475 (2018). https://doi.org/10.1021/acs.nanolett.7b05246

    Article  CAS  Google Scholar 

  55. Z. Lei, L. Xu, Y. Jiao, A. Du, Y. Zhang, H. Zhang, Strong coupling of MoS2 nanosheets and nitrogen-doped graphene for high-performance pseudocapacitance lithium storage. Small, 1704410 (2018). https://doi.org/10.1002/smll.201704410

    Article  Google Scholar 

  56. X. Hu, Y. Li, G. Zeng, J. Jia, H. Zhan, Z. Wen, et al., Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage. ACS Nano 12, 1592–1602 (2018). https://doi.org/10.1021/acsnano.7b08161

    Article  CAS  Google Scholar 

  57. S. Zhang, G. Wang, J. Jin, L. Zhang, Z. Wen, J. Yang, Robust and conductive red MoSe2 for stable and fast lithium storage. ACS Nano 12, 4010–4018 (2018). https://doi.org/10.1021/acsnano.8b01703

    Article  CAS  Google Scholar 

  58. M. Yousaf, Y. Wang, Y. Chen, Z. Wang, W. Aftab, A. Mahmood, R. Han, et al., Tunable free-standing core-shell CNT@MoSe2 anode for lithium storage. ACS Appl. Mater. Interfaces 10, 14622–14631 (2018). https://doi.org/10.1021/acsami.7b19739

    Article  CAS  Google Scholar 

  59. K. Chen, W. Zhang, L. Xue, W. Chen, X. Xiang, M. Wan, Y. Huang, Mechanism of capacity fade in sodium storage and the strategies of improvement for FeS2 anode. ACS Appl. Mater. Interfaces 9, 1536–1541 (2017). https://doi.org/10.1021/acsami.6b13421

    Article  CAS  Google Scholar 

  60. C. Jones, P. Kovacs, R. Sharma, R. McMillan, An iron-57 Moessbauer study of the intermediates formed in the reduction of iron disulfide in the lithium/iron disulfide battery system. J. Phys. Chem. 95, 774–779 (1991). https://doi.org/10.1021/j100155a053

    Article  CAS  Google Scholar 

  61. Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, et al., Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8, 1309–1316 (2015). https://doi.org/10.1039/C4EE03759F

    Article  CAS  Google Scholar 

  62. M. Butala, M. Mayo, V. Doan-Nguyen, M. Lumley, C. Gobel, K. Wiaderek, G. Laurita, et al., Local structure evolution and modes of charge storage in secondary Li-FeS2 cells. Chem. Mater. 29, 3070–3082 (2017). https://doi.org/10.1021/acs.chemmater.7b00070

    Article  CAS  Google Scholar 

  63. X. Wen, X. Wei, L. Yang, P. Shen, Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium-ion batteries. J. Mater. Chem. A 3, 2090–2096 (2015). https://doi.org/10.1039/c4ta05575f

    Article  CAS  Google Scholar 

  64. W. Yu, C. Liu, L. Zhang, P. Hou, F. Li, B. Zhang, H. Cheng, Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles. Adv. Sci. 3, 1600113 (2016). https://doi.org/10.1002/advs.201600113

    Article  CAS  Google Scholar 

  65. Y. Xu, W. Li, F. Zhang, X. Zhang, W. Zhang, C. Lee, Y. Tang, In situ incorporation of FeS nanoparticles/carbon nanosheets composite with an interconnected porous structure as a high-performance anode for lithium-ion batteries. J. Mater. Chem. A 4, 3697–3703 (2016). https://doi.org/10.1039/c5ta09138a

    Article  CAS  Google Scholar 

  66. S. Guo, J. Li, Z. Ma, Y. Chi, H. Xue, A facile method to prepare FeS/porous carbon composite as advanced anode material for lithium-ion batteries. J. Mater. Sci. 52, 2345–2355 (2017). https://doi.org/10.1007/s10853-016-0527-y

    Article  CAS  Google Scholar 

  67. X. Wang, Q. Xiang, B. Liu, L. Wang, T. Luo, D. Chen, G. Shen, TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci. Rep. 3, 2007 (2013). https://doi.org/10.1038/srep02007

    Article  Google Scholar 

  68. J. Zheng, Y. Cao, C. Cheng, C. Chen, R. Yan, H. Huai, C. Wang, et al., Facile synthesis of Fe3S4 hollow spheres with high-performance for lithium-ion batteries and water treatment. J. Mater. Chem. A 2, 19882–19888 (2014). https://doi.org/10.1039/C4TA05148C

    Article  CAS  Google Scholar 

  69. K. Zhang, T. Zhang, J. Liang, Y. Zhu, N. Lin, Y. Qian, A potential pyrrhotite (Fe7S8) anode material for lithium storage. RSC Adv. 5, 14828–14831 (2015). https://doi.org/10.1039/c4ra14819c

    Article  CAS  Google Scholar 

  70. L. Shi, D. Li, J. Yu, H. Liu, Y. Zhao, H. Xin, C. Zhu, et al., Uniform core-shell nano biscuits of Fe7S8@C for lithium-ion and sodium-ion batteries with excellent performance. J. Mater. Chem. A 6, 7967–7976 (2018). https://doi.org/10.1039/C8TA00985F

    Article  CAS  Google Scholar 

  71. F. Jiang, Q. Wang, R. Du, X. Yan, Y. Zhou, Fe7S8 nanoparticles attached carbon networks as anode materials for both lithium and sodium ion batteries. Chem. Phys. Lett. 706, 273–279 (2018). https://doi.org/10.1016/j.cplett.2018.06.023

    Article  CAS  Google Scholar 

  72. L. Mai, Y. Gao, J. Guan, B. Hu, L. Xu, W. Jin, Formation and lithiation of ferroselite nanoflowers as high-energy Li-ion battery electrodes. Int. J. Electrochem. Sci. 4, 755–761 (2009)

    CAS  Google Scholar 

  73. D. Wei, J. Liang, Y. Zhu, L. Hu, K. Zhang, J. Zhang, Y. Qian, et al., Layer structured α-FeSe: a potential anode material for lithium storage. Electrochem. Commun. 38, 124–127 (2014). https://doi.org/10.1016/j.elecom.2013.11.021

    Article  CAS  Google Scholar 

  74. K. Shiva, H. Matte, H. Rajendra, A. Bhattacharyya, C. Rao, Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries. Nano Energy 2, 787–793 (2013). https://doi.org/10.1016/j.nanoen.2013.02.001

    Article  CAS  Google Scholar 

  75. H. Liu, D. Su, G. Wang, S. Qiao, An ordered mesoporous WS2 anode material with a superior electrochemical performance for lithium ion batteries. J. Mater. Chem. 22, 17437–17440 (2012). https://doi.org/10.1039/C2JM33992G

    Article  CAS  Google Scholar 

  76. Q. Wang, L. Jiao, Y. Han, H. Du, W. Peng, Q. Huan, H. Yuan, et al., CoS2 hollow spheres: fabrication and their application in lithium-ion batteries. J. Phys. Chem. C 115, 8300–8304 (2011). https://doi.org/10.1021/jp111626a

    Article  CAS  Google Scholar 

  77. K. Zhang, M. Park, L. Zhou, G. Lee, W. Li, Y. Kang, J. Chen, Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26, 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608

    Article  CAS  Google Scholar 

  78. N. Mahmood, C. Zhang, Y. Hou, Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high-performance anode materials for lithium-ion batteries. Small 9, 1321–1328 (2013). https://doi.org/10.1002/smll.201203032

    Article  CAS  Google Scholar 

  79. Y. Long, J. Yang, X. Gao, X. Xu, W. Fan, J. Yang, Y. Qian, et al., Solid-solution anion-enhanced electrochemical performances of metal sulfides/selenides for sodium-ion capacitors: the case of FeS2−x Sex. ACS Appl. Mater. Interfaces 10, 10945–10954 (2018). https://doi.org/10.1021/acsami.8b00931

    Article  CAS  Google Scholar 

  80. P. Prikhodchenko, J. Gun, S. Sladkevich, A. Mikhaylov, O. Lev, Y. Tay, D. Yu, Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@graphene for a superior lithium battery anode. Chem. Mater. 24, 4750–4757 (2012). https://doi.org/10.1021/cm3031818

    Article  CAS  Google Scholar 

  81. N. Lin, T. Li, Y. Han, Q. Zhang, T. Xu, Y. Qian, Mesoporous hollow Ge microspheres prepared via molten-salt metallothermic reaction for the high-performance Li-storage anode. ACS Appl. Mater. Interfaces 10, 8399–8404 (2018). https://doi.org/10.1021/acsami.8b00567

    Article  CAS  Google Scholar 

  82. G. Sung, K. Jeon, C. Park, Highly reversible and superior Li-storage characteristics of layered GeS2 and its amorphous composites. ACS Appl. Mater. Interfaces 8, 29543–29550 (2016). https://doi.org/10.1021/acsami.6b10994

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by Shenzhen Fundamental Research Program of Subject Distribution (JCYJ20170413102735544) and Natural Science Foundation of Guangdong (2018A030313721).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, Q., Jiang, Q., Wu, J., Liu, X. (2019). Metal-Based Chalcogenide Anode Materials for Lithium-Ion Batteries. In: Zhen, Q., Bashir, S., Liu, J. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58675-4_6

Download citation

Publish with us

Policies and ethics