Skip to main content

Dedifferentiation and Regenerative Medicine: The Past and theĀ Future

  • Chapter
  • First Online:
Cellular Dedifferentiation and Regenerative Medicine

Abstract

The turnabout of cellular differentiation, which is named as dedifferentiation or cytodedifferentiation, has enchanted biologists for many decades. The term cellular dedifferentiation was initially formulated by researchers who would like to describe the general dissociation or histolysis of tissues that occurred in the proximity to amputation plane following the loss of a limb or tail. Although scientists could reprogram cells in culture, in vivo cellular reprogramming or cellular dedifferentiation has recently emerged in both vertebrate and invertebrate, allowing for analyzing this fascinating process under more specific and physiologically relevant circumstances. Myofibers, Schwann cells, periosteal cells, and connective tissue cells dissociated and formed mononucleated cells that migrated to the distal end of the stump where they formed a regeneration blastema under the wound epithelial cap. Researches have demonstrated that dedifferentiation emerged not only during the large-scale process of cellular regeneration but also at low levels to restore stem cells that are lost or damaged within normal turnover. Although dedifferentiation is poorly understood, it has the potential to generate numerous cell types for disease therapy. This review has summarized the chronological profile of achievement in the field of cellular dedifferentiation in both zoology and phytology. As the last chapter of this book, the vista of future research on this field was included with accent on interpreting dedifferentiation by cutting-edge methods and novel perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilbert SF, Barresi MJF. Developmental biology. 11th ed. Sunderland: Sinauer Associates; 2016.

    Google ScholarĀ 

  2. Odelberg SJ. Inducing cellular dedifferentiation a potential method for enhancing endogenous regeneration in mammals. Semin Cell Dev Biol. 2002;13:335ā€“43.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Gupta S. Unlock your inner salamander. Nature. 2016;540(7632):S58ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Wilson G. Hereditary polydactylism. J Anat Physiol. 1896;30(Pt 3):437ā€“49.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Weissman TA, Pan YA. Brainbow: new resources and emerging biological applications for multicolor genetic labeling and analysis. Genetics. 2015;199(2):293ā€“306.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  6. Liu YJ, Kanzler H, Soumelis V, Gilliet M. Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol. 2001;2(7):585ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science. 1999;283(5405):1183ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today. 1999;20(12):561ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. King C, Davies J, Mueller R, Lee MS, Krahl T, Yeung B, et al. TGF-beta1 alters APC preference, polarizing islet antigen responses toward a Th2 phenotype. Immunity. 1998;8(5):601ā€“13.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Akiba H, Miyahira Y, Atsuta M, Takeda K, Nohara C, Futagawa T, et al. Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J Exp Med. 2000;191(2):375ā€“80.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Delespesse G, Ohshima Y, Yang LP, Demeure C, Sarfati M. OX40-Mediated cosignal enhances the maturation of naive human CD4+ T cells into high IL-4-producing effectors. Int Arch Allergy Immunol. 1999;118(2ā€“4):384ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity. 2009;30(5):646ā€“55.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Boerboom A, Dion V, Chariot A, Franzen R. Molecular mechanisms involved in Schwann cell plasticity. Front Mol Neurosci. 2017;10:38.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Chen ZL, Yu WM, Strickland S. Peripheral regeneration. Annu Rev Neurosci. 2007;30:209ā€“33.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol. 2016;594(13):3521ā€“31.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron. 2012;75(4):633ā€“47.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Mirsky R, Woodhoo A, Parkinson DB, Arthur-Farraj P, Bhaskaran A, Jessen KR. Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation. J Peripher Nerv Syst. 2008;13(2):122ā€“35.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  18. Wagers AJ, Allsopp RC, Weissman IL. Changes in integrin expression are associated with altered homing properties of Lin(āˆ’/lo)Thy1.1(lo)Sca-1(+)c-kit(+) hematopoietic stem cells following mobilization by cyclophosphamide/granulocyte colony-stimulating factor. Exp Hematol. 2002;30(2):176ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Bianco P. ā€œMesenchymalā€ stem cells. Annu Rev Cell Dev Biol. 2014;30:677ā€“704.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Richter A, Nissen N, Mailander P, Stang F, Siemers F, Kruse C, et al. Mammary gland-derived nestin-positive cell populations can be isolated from human male and female donors. Stem Cell Res Ther. 2013;4(4):78.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Tata PR, Mou H, Pardo-Saganta A, Zhao R, Prabhu M, Law BM, et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature. 2013;503(7475):218ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Tsonis PA, Fox TP. Regeneration according to Spallanzani. Dev Dyn. 2009;238(9):2357ā€“63.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  23. Brockes JP. Amphibian limb regeneration: rebuilding a complex structure. Science. 1997;276(5309):81ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Brockes JP, Kumar A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol. 2002;3(8):566ā€“74.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Oberpriller JO, Oberpriller JC. Response of the adult newt ventricle to injury. J Exp Zool. 1974;187(2):249ā€“53.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Oberpriller JO, Oberpriller JC, Arefyeva AM, Mitashov VI, Carlson BM. Nuclear characteristics of cardiac myocytes following the proliferative response to mincing of the myocardium in the adult newt, Notophthalmus viridescens. Cell Tissue Res. 1988;253(3):619ā€“24.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat. 1995;154(1):8ā€“20.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112(12):1776ā€“84.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172(7):973ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429ā€“37.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Kondoh H, Ueda Y, Hayashi S, Okazaki K, Yasuda K, Okada TS. An attempt to assay the state of determination by using transfected genes as probes in transdifferentiation of neural retina into lens. Cell Differ. 1987;20(2ā€“3):203ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Okada TS. Cellular metaplasia or transdifferentiation as a model for retinal cell differentiation. Curr Top Dev Biol. 1980;16:349ā€“80.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Okada TS. Recent progress in studies of the transdifferentiation of eye tissue in vitro. Cell Differ. 1983;13(3):177ā€“83.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Eisenberg LM, Eisenberg CA. Stem cell plasticity, cell fusion, and transdifferentiation. Birth Defects Res C Embryo Today. 2003;69(3):209ā€“18.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Tsonis PA. Regeneration in vertebrates. Dev Biol. 2000;221(2):273ā€“84.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Del Rio-Tsonis K, Tsonis PA. Eye regeneration at the molecular age. Dev Dyn. 2003;226(2):211ā€“24.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  38. Nye HL, Cameron JA, Chernoff EA, Stocum DL. Regeneration of the urodele limb: a review. Dev Dyn. 2003;226(2):280ā€“94.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  39. Frid MG, Kale VA, Stenmark KR. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ Res. 2002;90(11):1189ā€“96.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Shen CN, Horb ME, Slack JM, Tosh D. Transdifferentiation of pancreas to liver. Mech Dev. 2003;120(1):107ā€“16.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Kaur K, Yang J, Eisenberg CA, Eisenberg LM. 5-azacytidine promotes the transdifferentiation of cardiac cells to skeletal myocytes. Cell Reprogram. 2014;16(5):324ā€“30.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Fernandez Pujol B, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML, et al. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation. 2000;65(5):287ā€“300.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Fernandez Pujol B, Lucibello FC, Zuzarte M, Lutjens P, Muller R, Havemann K. Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cells. Eur J Cell Biol. 2001;80(1):99ā€“110.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC. CD34- blood-derived human endothelial cell progenitors. Stem Cells. 2001;19(4):304ā€“12.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res. 2001;49(3):671ā€“80.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Robb L, Elefanty AG. The hemangioblast--an elusive cell captured in culture. BioEssays. 1998;20(8):611ā€“4.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development. 2009;136(4):509ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Eguizabal C, Montserrat N, Veiga A, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine. Semin Reprod Med. 2013;31(1):82ā€“94.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  49. Sugimoto K, Gordon SP, Meyerowitz EM. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol. 2011;21(4):212ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Atta R, Laurens L, Boucheron-Dubuisson E, Guivarcā€™h A, Carnero E, Giraudat-Pautot V, et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 2009;57(4):626ā€“44.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Suzuki K, Mitsutake N, Saenko V, Suzuki M, Matsuse M, Ohtsuru A, et al. Dedifferentiation of human primary thyrocytes into multilineage progenitor cells without gene introduction. PLoS One. 2011;6(4):e19354.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  52. Sun X, Fu X, Han W, Zhao Y, Liu H, Sheng Z. Dedifferentiation of human terminally differentiating keratinocytes into their precursor cells induced by basic fibroblast growth factor. Biol Pharm Bull. 2011;34(7):1037ā€“45.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Hanley SC, Assouline-Thomas B, Makhlin J, Rosenberg L. Epidermal growth factor induces adult human islet cell dedifferentiation. J Endocrinol. 2011;211(3):231ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Shen JF, Sugawara A, Yamashita J, Ogura H, Sato S. Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues. Int J Oral Sci. 2011;3(3):117ā€“24.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  55. Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717ā€“28.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Visvader JE. Cells of origin in cancer. Nature. 2011;469(7330):314ā€“22.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell. 2002;1(3):269ā€“77.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152(1ā€“2):25ā€“38.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. Schneuwly S, Klemenz R, Gehring WJ. Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature. 1987;325(6107):816ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51(6):987ā€“1000.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Joanna Price CF, Allen S. Deer antlers as a model of mammalian regeneration. Curr Top Dev Biol. 2005;67:1ā€“48.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  62. Welstead GG, Brambrink T, Jaenisch R. Generating iPS cells from MEFS through forced expression of Sox-2, Oct-4, c-Myc, and Klf4. J Vis Exp. 2008;(14).

    Google ScholarĀ 

  63. Yamanaka S. Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363(1500):2079ā€“87.

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. Hamilton B, Feng Q, Ye M, Welstead GG. Generation of induced pluripotent stem cells by reprogramming mouse embryonic fibroblasts with a four transcription factor, doxycycline inducible lentiviral transduction system. J Vis Exp. 2009;(33).

    Google ScholarĀ 

  65. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26(1):101ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26(11):1276ā€“84.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Giorgetti A, Montserrat N, Rodriguez-Piza I, Azqueta C, Veiga A, Izpisua Belmonte JC. Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2. Nat Protoc. 2010;5(4):811ā€“20.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Tiscornia G, Vivas EL, Izpisua Belmonte JC. Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nat Med. 2011;17(12):1570ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Chen C, Dubin R, Kim MC. Emerging trends and new developments in regenerative medicine: a scientometric update (2000ā€“2014). Expert Opin Biol Ther. 2014;14(9):1295ā€“317.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  70. Chen C, Hu Z, Liu S, Tseng H. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin Biol Ther. 2012;12(5):593ā€“608.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  71. Zhao XY, Su YH, Cheng ZJ, Zhang XS. Cell fate switch during in vitro plant organogenesis. J Integr Plant Biol. 2008;50(7):816ā€“24.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  72. Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276(5309):60ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. Jamet E, Durr A, Parmentier Y, Criqui MC, Fleck J. Is ubiquitin involved in the dedifferentiation of higher plant cells? Cell Differ Dev. 1990;29(1):37ā€“46.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Skoog F, Miller CO. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol. 1957;11:118ā€“30.

    CASĀ  PubMedĀ  Google ScholarĀ 

  75. Christianson ML, Warnick DA, Carlson PS. A morphogenetically competent soybean suspension culture. Science. 1983;222(4624):632ā€“4.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  76. Christianson ML, Warnick DA. Phenocritical times in the process of in vitro shoot organogenesis. Dev Biol. 1984;101(2):382ā€“90.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  77. Christianson ML, Warnick DA. Competence and determination in the process of in vitro shoot organogenesis. Dev Biol. 1983;95(2):288ā€“93.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  78. Williams L, Grafi G. The retinoblastoma proteinĀ ā€“ a bridge to heterochromatin. Trends Plant Sci. 2000;5(6):239ā€“40.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  79. Potuschak T, Doerner P. Cell cycle controls: genome-wide analysis in Arabidopsis. Curr Opin Plant Biol. 2001;4(6):501ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  80. Guo J, Song J, Wang F, Zhang XS. Genome-wide identification and expression analysis of rice cell cycle genes. Plant Mol Biol. 2007;64(4):349ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  81. Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012;481(7381):295ā€“305.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828ā€“33.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  83. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447(7148):1130ā€“4.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  84. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522ā€“31.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  85. Pourrajab F, Babaei Zarch M, BaghiYazdi M, Hekmatimoghaddam S, Zare-Khormizi MR. MicroRNA-based system in stem cell reprogramming; differentiation/dedifferentiation. Int J Biochem Cell Biol. 2014;55:318ā€“28.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  86. Ruike Y, Ichimura A, Tsuchiya S, Shimizu K, Kunimoto R, Okuno Y, et al. Global correlation analysis for micro-RNA and mRNA expression profiles in human cell lines. J Hum Genet. 2008;53(6):515ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  87. Park CY, Choi YS, McManus MT. Analysis of microRNA knockouts in mice. Hum Mol Genet. 2010;19(R2):R169ā€“75.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  88. Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012;149(3):515ā€“24.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  89. Buganim Y, Faddah DA, Cheng AW, Itskovich E, Markoulaki S, Ganz K, et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell. 2012;150(6):1209ā€“22.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  90. Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, Lowenberg B. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood. 2008;111(10):5078ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  91. Takakura S, Mitsutake N, Nakashima M, Namba H, Saenko VA, Rogounovitch TI, et al. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci. 2008;99(6):1147ā€“54.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  92. Teichenne J, Morro M, Casellas A, Jimenez V, Tellez N, Leger A, et al. Identification of miRNAs involved in reprogramming Acinar cells into insulin producing cells. PLoS One. 2015;10(12):e0145116.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  93. Lu J, Dong H, Lin L, Wang Q, Huang L, Tan J. miRNA-302 facilitates reprogramming of human adult hepatocytes into pancreatic islets-like cells in combination with a chemical defined media. Biochem Biophys Res Commun. 2014;453(3):405ā€“10.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  94. Lahmy R, Soleimani M, Sanati MH, Behmanesh M, Kouhkan F, Mobarra N. MiRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells. Mol Biol Rep. 2014;41(4):2055ā€“66.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  95. Mashima H, Ohnishi H, Wakabayashi K, Mine T, Miyagawa J, Hanafusa T, et al. Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells. J Clin Invest. 1996;97(7):1647ā€“54.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  96. Akinci E, Banga A, Greder LV, Dutton JR, Slack JM. Reprogramming of pancreatic exocrine cells towards a beta (beta) cell character using Pdx1, Ngn3 and MafA. Biochem J. 2012;442(3):539ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  97. Lan MS, Chen C, Saunee NA, Zhang T, Breslin MB. Expression of biologically active TAT-fused recombinant islet transcription factors. Life Sci. 2014;114(1):45ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  98. Lima MJ, Docherty HM, Chen Y, Docherty K. Efficient differentiation of AR42J cells towards insulin-producing cells using pancreatic transcription factors in combination with growth factors. Mol Cell Endocrinol. 2012;358(1):69ā€“80.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  99. Matsuoka TA, Kaneto H, Stein R, Miyatsuka T, Kawamori D, Henderson E, et al. MafA regulates expression of genes important to islet beta-cell function. Mol Endocrinol. 2007;21(11):2764ā€“74.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  100. Ogihara T, Fujitani Y, Uchida T, Kanno R, Choi JB, Hirose T, et al. Combined expression of transcription factors induces AR42J-B13 cells to differentiate into insulin-producing cells. Endocr J. 2008;55(4):691ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  101. Zhang YQ, Mashima H, Kojima I. Changes in the expression of transcription factors in pancreatic AR42J cells during differentiation into insulin-producing cells. Diabetes. 2001;50(Suppl 1):S10ā€“4.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  102. Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 2011;29(5):443ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  103. Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet. 2008;40(12):1478ā€“83.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  104. Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 2009;27(5):459ā€“61.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  105. Ishibe S, Cantley LG. Epithelial-mesenchymal-epithelial cycling in kidney repair. Curr Opin Nephrol Hypertens. 2008;17(4):379ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  106. Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV. Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A. 2011;108(22):9226ā€“31.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, X., Zhao, A., Hu, T. (2018). Dedifferentiation and Regenerative Medicine: The Past and theĀ Future. In: Cellular Dedifferentiation and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56179-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56179-9_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56177-5

  • Online ISBN: 978-3-662-56179-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics