Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 288 Accesses

Abstract

Reconstituting the membrane protein into a suitable model membrane is the first and essential step in studying the membrane protein in vitro. Commonly used membrane mimics include detergent micelles, detergent/lipid bicelles, and lipo somes (reviewed in the previous chapter). A newer model system is the “nanodisc,” originally designed by Dr. Sligar [1]. The nanodisc’s properties as a model membrane are discussed at length in this chapter, but in general its defining qualities are that it is a stable membrane mimic with a precisely controlled size and stoichiometry, making it a suitable system to study membrane proteins in their native environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayburt TH, Carlson JW, Sligar SG (1998) Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J Struct Biol 123(1):37–44

    Article  Google Scholar 

  2. Phillips JC et al (1997) Predicting the structure of apolipoprotein A-I in reconstituted high-density lipoprotein disks. Biophys J 73(5):2337–2346

    Article  Google Scholar 

  3. Shih AY, Sligar SG, Schulten K (2009) Maturation of high-density lipoproteins. J R Soc Interface 6(39):863–871

    Article  Google Scholar 

  4. Brouillette CG et al (1984) Structural studies of apolipoprotein A-I/phosphatidylcholine recombinants by high-field proton NMR, nondenaturing gradient gel electrophoresis, and electron microscopy. Biochem 23(2):359–367

    Article  Google Scholar 

  5. Segrest JP (1977) Amphipathic helixes and plasma lipoproteins: thermodynamic and geometric considerations. Chem Phys Lipids 18(1):7–22

    Article  Google Scholar 

  6. Brouillette CG et al (2001) Structural models of human apolipoprotein A-I: a critical analysis and review. Biochim Biophys Acta 1531(1–2):4–46

    Article  Google Scholar 

  7. Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochem 46(8):2059–2069

    Article  Google Scholar 

  8. Koppaka V et al (1999) The structure of human lipoprotein A-I. Evidence for the “belt” model. J Biol Chem 274(21):14541–14544

    Article  Google Scholar 

  9. Davidson WS, Hilliard GM (2003) The spatial organization of apolipoprotein A-I on the edge of discoidal high density lipoprotein particles: a mass specrometry study. J Biol Chem 278(29):27199–27207

    Article  Google Scholar 

  10. Silva RA et al (2005) A mass spectrometric determination of the conformation of dimeric apolipoprotein A-I in discoidal high density lipoproteins. Biochem 44(24):8600–8607

    Article  Google Scholar 

  11. Thomas MJ, Bhat S, Sorci-Thomas MG (2006) The use of chemical cross-linking and mass spectrometry to elucidate the tertiary conformation of lipid-bound apolipoprotein A-I. Curr Opin Lipidol 17(3):214–220

    Article  Google Scholar 

  12. Bhat S et al (2005) Intermolecular contact between globular N-terminal fold and C-terminal domain of ApoA-I stabilizes its lipid-bound conformation: studies employing chemical cross-linking and mass spectrometry. J Biol Chem 280(38):33015–33025

    Article  Google Scholar 

  13. Gorshkova IN et al (2006) Structure and stability of apolipoprotein a-I in solution and in discoidal high-density lipoprotein probed by double charge ablation and deletion mutation. Biochem 45(4):1242–1254

    Article  Google Scholar 

  14. Martin DD et al (2006) Apolipoprotein A-I assumes a “looped belt” conformation on reconstituted high density lipoprotein. J Biol Chem 281(29):20418–20426

    Article  Google Scholar 

  15. Panagotopulos SE et al (2001) Apolipoprotein A-I adopts a belt-like orientation in reconstituted high density lipoproteins. J Biol Chem 276(46):42965–42970

    Article  Google Scholar 

  16. Li H et al (2000) Structural determination of lipid-bound ApoA-I using fluorescence resonance energy transfer. J Biol Chem 275(47):37048–37054

    Article  Google Scholar 

  17. Li Y et al (2006) Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy. Biophys J 91(10):3819–3828

    Article  Google Scholar 

  18. Klon AE et al (2000) Molecular belt models for the apolipoprotein A-I Paris and Milano mutations. Biophys J 79(3):1679–1685

    Article  Google Scholar 

  19. Segrest JP et al (1999) A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein. J Biol Chem 274(45):31755–31758

    Article  Google Scholar 

  20. Cheung MC et al (1987) Characterization of high density lipoprotein subspecies: structural studies by single vertical spin ultracentrifugation and immunoaffinity chromatography. J Lipid Res 28(8):913–929

    Google Scholar 

  21. Borhani DW et al (1997) Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc Natl Acad Sci U S A 94(23):12291–12296

    Article  Google Scholar 

  22. Shih AY et al (2005) Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins. Biophys J 88(1):548–556

    Article  Google Scholar 

  23. Shih AY et al (2007) Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations. J Struct Biol 157(3):579–592

    Article  MathSciNet  Google Scholar 

  24. Denisov IG et al (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126(11):3477–3487

    Article  Google Scholar 

  25. Baas BJ, Denisov IG, Sligar SG (2004) Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch Biochem Biophys 430(2):218–228

    Article  Google Scholar 

  26. Bayburt TH, Sligar SG (2003) Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci 12(11):2476–2481

    Article  Google Scholar 

  27. Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Lett 584(9):1721–1727

    Article  Google Scholar 

  28. Civjan NR, et al (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. Biotech 35(3):p 556–60, 562–3

    Google Scholar 

  29. Duan H et al (2004) Co-incorporation of heterologously expressed Arabidopsis cytochrome P450 and P450 reductase into soluble nanoscale lipid bilayers. Arch Biochem Biophys 424(2):141–153

    Article  Google Scholar 

  30. Shimizu Y et al (2006) Cell-free translation systems for protein engineering. FEBS J 273(18):4133–4140

    Article  Google Scholar 

  31. Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23(3):150–156

    Article  Google Scholar 

  32. Farrokhi N et al (2009) Heterologous and cell free protein expression systems. Methods Mol Biol 513:175–198

    Article  Google Scholar 

  33. Katzen F, Peterson TC, Kudlicki W (2009) Membrane protein expression: no cells required. Trends Biotechnol 27(8):455–460

    Article  Google Scholar 

  34. Luirink J et al (2005) Biogenesis of inner membrane proteins in Escherichia coli. Annu Rev Microbiol 59:329–355

    Article  Google Scholar 

  35. Andersson H, von Heijne G (1994) Membrane protein topology: effects of delta mu H+ on the translocation of charged residues explain the ‘positive inside’ rule. EMBO J 13(10):2267–2272

    Google Scholar 

  36. Alami M et al (2007) Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J 26(8):1995–2004

    Article  Google Scholar 

  37. Cappuccio JA et al (2008) Cell-free co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles. Mol Cell Proteomics 7(11):2246–2253

    Article  Google Scholar 

  38. Katzen F et al (2008) Insertion of membrane proteins into discoidal membranes using a cell-free protein expression approach. J Proteome Res 7(8):3535–3542

    Article  Google Scholar 

  39. Wang X et al (2015) Smaller Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR. Protein J 34(3):205–211

    Article  Google Scholar 

  40. Xu C et al (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135(4):702–713

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunchen Bi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Bi, Y. (2018). Lipid Molecular-Ion Interaction Study Based on Nanodisc. In: Study of the Calcium Regulation Mechanism of TCR Activation Using Nanodisc and NMR Technologies. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54618-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54618-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54616-1

  • Online ISBN: 978-3-662-54618-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics