Skip to main content
Log in

Smaller Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Phospholipid bilayer nanodiscs, a newly developed model membrane system, provides “native-like” membrane environment for membrane protein studies. Nanodiscs assembled by membrane scaffold protein and phospholipid bilayer, with defined sizes that can be accurately regulated by changing the amino acid residues of the MSP construct. Herein we described the expression and purification of ΔMSP, a deletion mutant of the membrane scaffold protein. Smaller nanodiscs with mixed lipids were assembled, and the observed 31P NMR spectra showed identical chemical shifts to those of nanodiscs with pure POPC and POPE lipids, indicating they share similar chemical environments. The success of incorporation STIM1-TM into nanodiscs indicated the application of this smaller nanodisc system can be used to membrane protein studies by solution NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

MSP:

Membrane scaffold protein

TEV:

Tobacco etch virus

Histag:

Hexahistidine affinity tag

IPTG:

Isopropyl-thio-galactoside

POPE:

1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

DMPC:

1,2-Dimyristoyl-sn-glycero-3-phosphocholine

TPC:

N-tetradecylphosphocholine

DLS:

Dynamic light scattering

NMR:

Nuclear magnetic resonance

SDS–PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

HSQC:

Heteronuclear singular quantum correlation

References

  1. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2(8):853–856

    Article  CAS  Google Scholar 

  2. Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46(8):2059–2069

    Article  CAS  Google Scholar 

  3. Katayama H et al (2010) Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles. Proc Natl Acad Sci 107(8):3453–3457

    Article  CAS  Google Scholar 

  4. Ritchie T et al (2009) Chapter eleven-reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231

    CAS  Google Scholar 

  5. Raschle T et al (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131(49):17777–17779

    Article  CAS  Google Scholar 

  6. Kang C, Li Q (2011) Solution NMR study of integral membrane proteins. Curr Opin Chem Biol 15(4):560–569

    Article  CAS  Google Scholar 

  7. Denisov I et al (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc 126(11):3477–3487

    Article  CAS  Google Scholar 

  8. Zhang SL et al (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905

    Article  CAS  Google Scholar 

  9. Palgunachari MN et al (1996) Only the two end helixes of eight tandem amphipathic helical domains of human apo AI have significant lipid affinity Implications for HDL assembly. Arterioscler Thromb Vascular Biol 16(2):328–338

    Article  CAS  Google Scholar 

  10. Saito H et al (2004) α-Helix formation is required for high affinity binding of human apolipoprotein AI to lipids. J Biol Chem 279(20):20974–20981

    Article  CAS  Google Scholar 

  11. Denisov IG, Sligar SG (2011) Cytochromes P450 in nanodiscs. Biochim Biophys Acta (BBA) Proteins Proteomics 1814(1):223–229

    Article  CAS  Google Scholar 

  12. Hagn F et al (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135(5):1919–1925

    Article  CAS  Google Scholar 

  13. Barrera NP, Zhou M, Robinson CV (2013) The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol 23(1):1–8

    Article  CAS  Google Scholar 

  14. Park SH et al (2011) Nanodiscs versus macrodiscs for NMR of membrane proteins. Biochemistry 50(42):8983–8985

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China(No.31200579, National Key Basic Research Program from Ministry of Science and Technology (2012CB917202), and Hefei Center for Physical Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujuan Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Mu, Z., Li, Y. et al. Smaller Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR. Protein J 34, 205–211 (2015). https://doi.org/10.1007/s10930-015-9613-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-015-9613-2

Keywords

Navigation