Invariant Checking of NRA Transition Systems via Incremental Reduction to LRA with EUF

  • Alessandro Cimatti
  • Alberto Griggio
  • Ahmed Irfan
  • Marco Roveri
  • Roberto Sebastiani
Conference paper

DOI: 10.1007/978-3-662-54577-5_4

Part of the Lecture Notes in Computer Science book series (LNCS, volume 10205)
Cite this paper as:
Cimatti A., Griggio A., Irfan A., Roveri M., Sebastiani R. (2017) Invariant Checking of NRA Transition Systems via Incremental Reduction to LRA with EUF. In: Legay A., Margaria T. (eds) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2017. Lecture Notes in Computer Science, vol 10205. Springer, Berlin, Heidelberg

Abstract

Model checking invariant properties of designs, represented as transition systems, with non-linear real arithmetic (NRA), is an important though very hard problem. On the one hand NRA is a hard-to-solve theory; on the other hand most of the powerful model checking techniques lack support for NRA. In this paper, we present a counterexample-guided abstraction refinement (CEGAR) approach that leverages linearization techniques from differential calculus to enable the use of mature and efficient model checking algorithms for transition systems on linear real arithmetic (LRA) with uninterpreted functions (EUF). The results of an empirical evaluation confirm the validity and potential of this approach.

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Alessandro Cimatti
    • 1
  • Alberto Griggio
    • 1
  • Ahmed Irfan
    • 1
    • 2
  • Marco Roveri
    • 1
  • Roberto Sebastiani
    • 2
  1. 1.Fondazione Bruno KesslerTrentoItaly
  2. 2.University of TrentoTrentoItaly

Personalised recommendations