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Abstract. Model checking invariant properties of designs, represented
as transition systems, with non-linear real arithmetic (NRA), is an
important though very hard problem. On the one hand NRA is a hard-to-
solve theory; on the other hand most of the powerful model checking tech-
niques lack support for NRA. In this paper, we present a counterexample-
guided abstraction refinement (CEGAR) approach that leverages lin-
earization techniques from differential calculus to enable the use of
mature and efficient model checking algorithms for transition systems
on linear real arithmetic (LRA) with uninterpreted functions (EUF).
The results of an empirical evaluation confirm the validity and potential
of this approach.

1 Introduction

Invariant checking for infinite-state transition systems is a fundamental research
area. Based on the recent improvements of SMT technologies, effective
approaches have been developed for the case of transition systems with dynam-
ics over Linear Real Arithmetic [4,9,18,21]. However, many real-world industrial
designs (e.g. aerospace, automotive) require modeling as transition systems over
non-linear arithmetic (NRA). Although both problems are undecidable, proving
properties of the NRA transition systems turns out to be much harder than
the linear case, and has in fact received much less attention. Approaches based
on BMC and k-induction [15,29] are possible, so that non-linearity is handled
at the SMT-level, by means of an SMT(NRA) solver (e.g. Z3 [13], nlSAT [20],
Yices [14], SMT-RAT [1]). Their power is however limited. Consider the follow-
ing simple transition system: initially, x ≥ 2 ∧ y ≥ 2 ∧ z = x ∗ y; the transition
relation is defined by x′ = x + 1 ∧ y′ = y + 1 ∧ z′ = x′ ∗ y′. The property “it is
always the case that z ≥ x+y” is not k-inductive, not even for a very large value
of k. Thus, the typical proving techniques that are based on k-induction using an
SMT(NRA) solver will not be able to prove it. In principle, it is also possible to

This work was performed as part of the H2020-FETOPEN-2016-2017-CSA project
SC2 (712689).

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 58–75, 2017.
DOI: 10.1007/978-3-662-54577-5 4



Invariant Checking of NRA Transition Systems via Incremental Reduction 59

lift other approaches (e.g. interpolation, IC3 [9,26]) to handle non-linearities at
the level of the solver. However, this requires the SMT(NRA) solver to carry out
interpolation or quantifier elimination, and to proceed incrementally. These extra
functions are usually not available, or they have a very high computational cost.

In this paper, we propose a completely different approach to tackle invariant
checking for NRA transition systems. Basically, we work with an abstract version
of the transition system, expressed over LRA with EUF, for which we have
effective verification tools [9]. In the abstract space, nonlinear multiplication
is modeled as an uninterpreted function. When spurious counter-examples are
found, the abstraction is tightened by the incremental introduction of linear
constraints, including tangent planes resulting from differential calculus, and
monotonicity constraints.

We implemented the approach on top of the nuXmv model checker [7], lever-
aging the IC3 engine with Implicit Abstraction [9] for invariant checking of tran-
sition systems over LRA with EUF. We compared it, on a wide set of bench-
marks, against multiple approaches working at NRA level, including BMC and
k-induction using SMT(NRA), the recent interpolation-based iSAT3 engine [24],
and the static abstraction approach proposed in [8]. The results demonstrate sub-
stantial superiority of our approach, that is able to solve the highest number of
benchmarks.

The effectiveness of our approach is possibly explained with the following
insights. On the one hand, in contrast to LRA, NRA is a hard-to-solve the-
ory: in practice, most available complete solvers rely on CAD techniques [12],
which require double exponential time in worst case. Thus, we try to avoid NRA
reasoning, trading it for LRA and EUF reasoning. On the other hand, proving
properties of practical NRA transition systems may not require the full power
of non-linear solving. In fact, some systems are “mostly-linear” (i.e. non-linear
constraints are associated to a very small part of the system), an example being
the Transport Class Model (TCM) for aircraft simulation from the Simulink
model library [19]. Furthermore, even NRA transition systems with significant
non-linear dynamics may admit a piecewise-linear invariant of the transition
system that is strong enough to prove the property.

Structure. In Sect. 2 we discuss the related work, and in Sect. 3 introduce some
background. In Sect. 4 we discuss the approach in the setting of SMT(NRA).
In Sect. 5 we present the verification algorithm for NRA transition systems.
In Sect. 6 we describe the results of the experimental evaluation. In Sect. 7 we
conclude and outline the directions for future research.

2 Related Work

There are not many tools that deal with NRA transition systems. The most rele-
vant is the recently proposed iSAT3 [28], that uses an interpolation-based [23,24]
approach to prove invariants. In addition to NRA, it also supports trascendental
functions and some form of differential equations. iSAT3 is built on an SMT
solver based on numeric techniques (interval arithmetic), and is able to provide
results that are accurate up to the specified precision. In fact, in addition to



60 A. Cimatti et al.

(a) x ∗ y (b) x ∗ y (top
view)

(c) x ∗ y and tangent
plane

(d) x ∗ y and tan-
gent plane (top
view)

Fig. 1. Multiplication function and tangent plane.

“safe” and “unsafe” answers, iSAT3 may return “maybe unsafe” when it finds
an envelope of given precision that may (but is not guaranteed to) contain a
counterexample. Another relevant tool is dReach [22], a bounded model checker
implemented on top of the dReal [16] SMT solver, that adopts numerical tech-
niques similar to iSAT3. dReach has an expressiveness similar to iSAT3, but
being a bounded model checker it is unable to prove properties.

The work in [8] follows a reduction-based approach to check invariants of
NRA transition systems. It over-approximates the non-linear terms with a coarse
abstraction, encoding into LRA some weak properties of multiplication like iden-
tity and sign. Another reduction-based approach is presented in [25] in the con-
text of program analysis. The idea is to find a (tighter) convex approximation
of polynomials in form of polyhedra, thus obtaining a conservative linear transi-
tion system. The key differences of our approach with respect to [8,25] are that
we iteratively refine the abstraction, and we adopt a reduction to LRA+EUF.
Furthermore, to the best of our knowledge, there is no available implementation
of the approach [25] in a program analysis tool – it has been only shown to work
on SMT problems.

The idea of approximating a univariate function (in particular the natural
logarithm ln) with tangent lines is used in [30]. Here we abstract a bivariate
function (multiplication), and use tangent planes for the refinement. We also
exploit other properties (e.g. monotonicity) to derive additional axioms. The
idea of using tangent planes (spaces) has been explored in [27], limited to the
case of SMT solving. Another key differences is that the tangent planes area
used to under-approximate predicates, while we use them to refine the over-
approximation of the multiplication function.

3 Background

Properties of the Multiplication Function. Geometrically, the surface gen-
erated by the multiplication function f(x, y) def= x ∗ y is shown in Fig. 1a and b.
This kind of surface is known in geometry as hyperbolic paraboloid. A hyperbolic
paraboloid is a doubly-ruled surface, i.e. for every point on the surface, there are
two distinct lines projected from the surface such that they pass through the
point. In case of the multiplication surface, the projected lines basically lie on
the surface.
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Tangent Plane. The tangent plane to a surface at a point of interest (a, b) is a
plane that “just touches” the surface at the point. The tangent planes can be
used to linearly approximate the surface at the point of interest. An important
property of the tangent plane to a hyperbolic paraboliod is that the two projected
lines from the surface are also in the tangent plane, and they define how the
plane cuts the surface (see Fig. 1c and d). The tangent plane Tmula,b(x, y) to
the multiplication function f(x, y) at point (a, b) is calculated as follows:

Tmula,b(x, y) def= f(a, b) +
d

dx
f(x, y)|(a,b)

∗ (x − a) +
d

dy
f(x, y)|(a,b)

∗ (y − b)

where d
dxf(x, y)|(a,b)

and d
dy f(x, y)|(a,b)

are the first-order partial derivatives of
f(x, y) w.r.t. x and y respectively, evaluated at (a, b). Tmula,b(x, y) simplifies
to:

Tmula,b(x, y) def= b ∗ x + a ∗ y − a ∗ b (1)

Logic and Satisfiability. We assume the standard first-order quantifier-free
logical setting and standard notions of theory, model, satisfiability, and logical
consequence. If ϕ is a formula, we denote with vars(ϕ) the set of its variables, and
with atoms(ϕ) the set of its atoms. We write ϕ(X) to denote that vars(ϕ) ⊆ X.
If x and y are two variables, we denote with ϕ{x �→ y} the formula obtained
by replacing all the occurrences of x in ϕ with y. We extend this notation to
ordered sequences of variables in the natural way. If μ is a model and x is a
variable, we write μ[x] to denote the value of x in μ, and we extend this notation
to terms in the usual way. If X is a set of variables, we denote with X ′ the
set obtained by replacing each element x ∈ X with x′, and with X〈i〉 the set
obtained by replacing x with x〈i〉. If Γ is a set of formulas, we write

∧
Γ to

denote the formula obtained by taking the conjunction of all its elements. If
∧

Γ
is unsatisfiable (modulo some theory T ), an unsatisfiable core is a set C ⊆ Γ
such that

∧
C is still unsatisfiable.

Symbolic Transition Systems. A symbolic transition system S def= 〈X, I, T 〉
is a tuple where X is a finite set of (state) variables, I(X) is a formula denot-
ing the initial states of the system, and T (X,X ′) is a formula expressing its
transition relation. A state si of S is an assignment to the variables X. A
path (execution trace) π = s0, s1, s2, . . . , sk−1 of length k (possibly infinite)
for S is a sequence of states such that s0 |= I and si ∧ si+1{X �→ X ′} |= T
for all 0 ≤ i < k − 2. We call an unrolling of S of length k the formula
I{X �→ X〈0〉} ∧ ∧k−1

i=0 T{X �→ X〈i〉}{X ′ �→ X〈i+1〉}.
Let P (X) be a formula whose assignments represent a property (good states)

over the state variables X. The invariant verification problem, denoted with
S |= P , is the problem of checking if for all the finite paths s0, s1, . . . , sk of S,
for all i, 0 ≤ i ≤ k, si |= P . Its dual formulation in terms of reachability of
¬P is the problem of finding a path s0, s1, . . . , sk of S such that sk |= ¬P . P
represents the “good” states, while ¬P represents the “bad” states.
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Fig. 2. Solving SMT(NRA) via abstraction to SMT(LRA+EUF).

4 Solving SMT(NRA) via SMT(LRA+EUF)

Top-Level Algorithm. The main idea of this paper is that of solving an SMT
formula containing non-linear polynomial constraints (i.e., expressed in the NRA
theory) by overapproximating it with a formula over the combined theory of lin-
ear arithmetic and uninterpreted functions (LRA+EUF). Our main SMT solving
procedure follows a classic abstraction refinement loop, in which at each iteration
the current overapproximation of the input SMT formula is refined by adding
new constraints that rule out one (or possibly more) spurious solutions, until
one of the following occurs: (i) the SMT formula becomes unsatisfiable in the
LRA+EUF theory; or (ii) the LRA+EUF model for the current overapproxima-
tion can be lifted to an NRA model for the original SMT formula; or (iii) the
resource budget (e.g. time, memory, number of iterations) is exhausted.

The pseudocode for the top-level algorithm is shown in Fig. 2. We provide
more details about its main components in the rest of this section.

Initial Abstraction. The function initial-abstraction takes as input an
SMT(NRA) formula ϕ and returns an overapproximation ϕ̂ of it in the
LRA+EUF theory.

First, each multiplication expression x ∗ y between two variables1 occurring
in ϕ is replaced by fmul(x, y), where fmul() is a binary uninterpreted function
returning a real. We remark that this happens only for non-linear multiplications:
expressions like c ∗ x or x ∗ c in which c is a constant are not rewritten.

Then, some simple axioms about multiplication are added to ϕ̂ via static
learning. For each fmul(x, y) ∈ ϕ̂, we add the following axioms:

1 To simplify the presentation, we assume (here and in the rest of the paper) that all
multiplications in ϕ are either between two variables or between one constant and
one variable.
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Commutativity: fmul(x, y) = fmul(y, x)
Sign: fmul(x, y) = fmul(−x,−y) ∧ fmul(x, y) = −fmul(−x, y) ∧

fmul(x, y) = −fmul(x,−y)
Zero: ((x = 0 ∨ y = 0) ↔ fmul(x, y) = 0) ∧

(((x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0)) → fmul(x, y) > 0) ∧
(((x < 0 ∧ y > 0) ∨ (x < 0 ∧ y > 0)) → fmul(x, y) < 0)

Abstraction Refinement. If the SMT check on the LRA+EUF abstraction
returns false (line 7 of Fig. 2), we can conclude that the input formula is unsat-
isfiable. In this case, Γ contains all the lemmas (discussed later in this section)
that were added in the earlier refinements (line 11 of Fig. 2).

Otherwise, we have to check whether the model μ̂ found for ϕ̂ is also a model
for the original NRA formula ϕ. Let Fmuls be the set of all fmul(x, y) terms
occurring in ϕ̂. In its simplest version, the function get-NRA-model checks whether,
for all fmul(x, y) in Fmuls, μ̂[fmul(x, y)] = μ̂[x] ∗ μ̂[y]. If this is the case,
then μ̂ is also a model for the original formula, and get-NRA-model returns true.
(We present more sophisticated versions of get-NRA-model below.) Otherwise, let
CFmuls be the set of all fmul(x, y) terms whose value in μ̂ is different from
μ̂[x]∗ μ̂[y]. The function refine generates a set of axioms Γ ′ such that there exists
at least one element fmul(x, y) of CFmuls such that the formula ϕ̂ ∧ ∧

Γ ′ has
no model μ̂′ that agrees with μ̂ on the values of x, y and fmul(x, y) (i.e. such
that μ̂′[fmul(x, y)] = μ̂[fmul(x, y)], μ̂′[x] = μ̂[x] and μ̂′[y] = μ̂[y]). Intuitively,
the axioms Γ ′ block the bad model values for fmul(x, y), making the abstraction
more precise by restricting the set of spurious solutions.

In our current implementation, two kinds of lemmas are generated during
refinement: tangent lemmas and monotonicity lemmas.

Tangent Lemmas. We use the model values μ̂[fmul(x, y)], μ̂[x] and μ̂[y] and (1)
to generate tangent plane lemmas for fmul(x, y):

fmul(a, y) = a ∗ y ∧ fmul(x, b) = b ∗ x ∧
(((x > a ∧ y < b) ∨ (x < a ∧ y > b)) → fmul(x, y) < Tmula,b(x, y)) ∧
(((x < a ∧ y < b) ∨ (x > a ∧ y > b)) → fmul(x, y) > Tmula,b(x, y))

(2)

where we can choose a and b as:

a
def= μ̂[x] and b

def= μ̂[y] (3)

a
def=

1
μ̂[fmul(x, y)]

and b
def= μ̂[y] (4)

a
def= μ̂[x] and b

def=
1

μ̂[fmul(x, y)]
. (5)

Basically the equalities in the tangent lemma are providing multiplication lines
that enforce the correct value of fmul(x, y) when x = a or y = b. Moreover, the
inequalities of the tangent lemma are providing bounds for fmul(x, y) when x
and y are not on the multiplication lines.
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Fig. 3. A complete procedure using an NRA solver.

Monotonicity Lemmas. Let fmul(x, y) and fmul(w, z) be two terms in ϕ̂, such
that |μ̂[x]| ≤ |μ̂[w]|, |μ̂[y]| ≤ |μ̂[z]|, and |μ̂[fmul(x, y)]| > |μ̂[fmul(w, z)]|. Then,
we add the monotonicity lemma

(abs(x) ≤ abs(w)∧abs(y) ≤ abs(z)) → abs(fmul(x, y)) ≤ abs(fmul(w, z)), (6)

where abs(t) stands for ite(t < 0,−t, t).

Finding Models. It is easy to see that our algorithm is expected to perform
much better for unsatisfiable instances than for satisfiable ones. The algorithm
can return true (meaning that the formula is satisfiable) only if the LRA+EUF
solver “guesses” a model that is consistent with all the nonlinear multiplications.
In an infinite and dense domain like the reals, the chances that this will happen
are close to zero in general.

Moreover, our approach is inherently limited, because it can only find models
over the rationals. If the input formula is satisfiable, but all its models contain
some irrational values, then our algorithm will always abort (or never terminate,
if there is no resource budget set). In practice, it is very likely that the same will
happen even for formulas admitting a rational solution.

One possibility for addressing this limitation would be to couple our proce-
dure with a complete solver for NRA, to be used for detecting satisfiable cases,
in order to implement a more effective version of get-NRA-model. One such pos-
sibility is shown in Fig. 3, where we extract the truth assignment ψ̂ induced by
the LRA+EUF model μ̂ on the atoms of ϕ̂:

ψ̂
def=

∧

[âi∈atoms(ϕ̂) s.t. μ̂|=âi]

âi ∧
∧

[âi∈atoms(ϕ̂) s.t. μ̂�|=âi]

¬âi, (7)

We concretize it by replacing each fmul(x, y) in ψ̂ with x ∗ y, and invoke the
complete NRA theory solver on the resulting conjunction of NRA-literals ψ, to
check whether it contains at least one solution. Although in general the problem
is expected to be simpler than the original input formula because the Boolean
structure of ϕ is disregarded, invoking a complete NRA theory solver at each
loop iteration of SMT-NRA-check-abstract-ext could be very expensive. Moreover,
this would still require a complete NRA theory solver, which might not always
be available.

As an alternative, we propose the procedure outlined in Fig. 4, where we
extract the truth assignment ψ̂ induced by the LRA+EUF model μ̂ on the
atoms of ϕ̂, and we conjoin to it the multiplication lines:
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Fig. 4. An incomplete procedure using an SMT(LRA+EUF) solver.

ψ̂∗ = ψ̂ ∧
∧

fmul(x,y)∈Fmuls

(
(x = μ̂[x] ∧ fmul(x, y) = μ̂[x] ∗ y) ∨
(y = μ̂[y] ∧ fmul(x, y) = μ̂[y] ∗ x)

)

, (8)

Fmuls being the usual set of all fmul(x, y) terms occurring in ϕ̂.
The main idea is to build an LRA+EUF underapproximation ψ̂∗ of the NRA

formula ψ of Fig. 3, in which all multiplications are forced to be linear. Com-
pared to the previous solution, this has the advantage of requiring a complete
SMT(LRA+EUF) solver rather than a (much more expensive) complete NRA
solver. Moreover, given the simplicity of the Boolean structure of the underap-
proximated formula, the check should in general be very cheap. The drawback is
that this is (clearly) still an incomplete procedure. However, in our experiments
(for which we refer to Sect. 6) we have found it to be surprisingly effective for
many problems.

Unlike with the basic implementation of get-NRA-model which considers only
one single candidate model at a time, the implementations in Figs. 3 and 4
consider an infinite amount of them, drastically increasing the chances of finding
a model.

Correctness and Progress. We notice that the procedure in Fig. 2 is correct.
In fact, it returns false only if ϕ is NRA-unsatisfiable because by construction
ϕ̂ is an over-approximation of ϕ, and all axioms in Γ are valid in any theory
interpreting fmul(x, y) as x∗y. Also, it returns true only if ϕ is NRA-satisfiable:

– if get-NRA-model is based only on evaluation, then by construction μ is an
LRA+EUF-model for ϕ̂ s.t. each fmul(x, y) equals x∗y in μ, so that μ is also
a model for ϕ;

– if get-NRA-model is as in Fig. 3, then μ is an NRA-model of a conjunction of
literals ψ which tautologically entails ϕ, so that μ is a model for ϕ;

– if get-NRA-model is as in Fig. 4, then μ is an LRA+EUF-model of a conjunction
of literals ψ̂∗ which tautologically entails ϕ̂ and it is s.t. each fmul(x, y) equals
x ∗ y in μ, so that μ is a also model for ϕ.

We also notice that the progress of the procedure in Fig. 2 is guaranteed by
the refinement step, which rules out significant parts of the search space at every
loop by means of the added lemmas.

Important Heuristics for Refinement. The description of refine provided
above leaves some flexibility in deciding what axioms to add (and how many of
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regions with lower bounds regions with upper bounds regions with both upper and lower
bounds

(a) current frontier (b) new point (a, b) (c) instantiation of (2)
on (a, b)

(d) additional instan-
tiations and updated
frontier

Fig. 5. Illustration of the tangent lemma frontier strategy.

them) at each iteration. It is possible to conceive strategies with an increasing
degree of eagerness, from very lazy (e.g. adding only a single axiom per iteration)
to more aggressive ones. In our current implementation, we eagerly add all the
axioms (2)–(6) that are violated by the current abstract solution μ̂, leaving the
investigation of alternative strategies as future work. However, we found the
following two strategies to be crucial for performance.

Tangent Lemma Frontiers. The tangent lemmas of (2) for a given point (a, b) are
based on the fact that the multiplication function x∗y is a hyperbolic paraboloid
surface, and a tangent plane to such surface cuts the surface into four regions
such that in two of the regions the tangent plane is above the surface, whereas
in the other two regions the tangent plane is below the surface (see Fig. 1).
Each instantiation of (2) for a given point, therefore, can only provide either
a lower or an upper bound for a given region. In some cases, this might lead
to an infinite refinement loop in which at each iteration the “wrong” bound is
refined. In order to address the problem, we use the following strategy. For each
fmul(x, y) in the input formula, we maintain a frontier 〈lx, ux, ly, uy〉 with the
invariant that whenever x is in the interval [lx, ux] or y is in the interval [ly, uy],
then fmul(x, y) has both an upper and a lower bound. Initially, the frontiers
are set to 〈0, 0, 0, 0〉. Whenever a lemma (2) for fmul(x, y) is instantiated on a
point (a, b), we generate further instantiations of (2) and update the frontier as
follows:

case a < lx and b < ly: instantiate (2) on (a, uy) and on (ux, b), and set the
frontier to 〈a, ux, b, uy〉;

case a < lx and b > uy: instantiate (2) on (a, ly) and on (ux, b), and set the
frontier to 〈a, ux, ly, b〉;

case a > ux and b > uy: instantiate (2) on (a, ly) and on (lx, b), and set the
frontier to 〈lx, a, ly, b〉;

case a > ux and b < ly: instantiate (2) on (a, uy) and on (lx, b), and set the
frontier to 〈lx, a, b, uy〉.

Figure 5 shows a graphical illustration of the strategy.
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Tangent Lemma Rounding. The instantiation of a tangent lemma at the point
(a, b) has the side-effect of adding the rational constants a, b and a ∗ b to the
formula that is solved by the LRA+EUF solver. If such values have large numer-
ators and/or denominators, they might be a source of a significant slow-down for
the LRA solver (which works on exact, arbitrary-precision rational arithmetic).
We address this issue by observing that, in order to block a bad model μ̂ such
that μ̂[fmul(x, y)] �= μ̂[x]∗ μ̂[y], it is sufficient to add one of the two equalities of
(2); therefore, instead of instantiating a tangent lemma at (a, b), we can instan-
tiate it at either (a+δ, b) or at (a, b+δ), for any value of δ. In practice, if a (resp.
b) is a rational constant with a very large numerator or denominator, instead of
instantiating a tangent lemma at (a, b), we instantiate two tangent lemmas at
(�a�, b) and (�a�, b).

5 From Satisfiability to Verification

We now move from satisfiability checking to verification.

Overview. In principle, the solver described in the previous section could be
integrated as a “black box” in any off-the-shelf SMT-based verification algo-
rithm, such as BMC, k-induction, or one of the many extensions of IC3 to the
SMT case (e.g. [4,9,18,21]). In practice, however, such black-box integration
would hardly be effective, especially in the case of state-of-the-art algorithms
like IC3. IC3 requires a very incremental interaction with the underlying SMT
engine, which is asked to solve a large number of relatively-cheap queries. The
procedure of Sect. 4, however, can be very expensive, especially for satisfiable
queries, which are very common in an IC3-like algorithm.2 Moreover, some of
the IC3 extensions mentioned above require the ability of performing (approx-
imated) quantifier eliminations, a functionality not provided by the algorithm
of Fig. 2.

We propose therefore a white-box integration, in which we lift the abstrac-
tion refinement approach of Sect. 4 at the transition system level. We generate an
abstract LRA+EUF version of the input NRA transition system, which is then
checked with the IC3-based procedure of [9]. In case a counterexample is pro-
duced, we use the SMT-NRA-check-abstract-ext algorithm of Fig. 2 to check whether
it is spurious. If so, the axioms generated by SMT-NRA-check-abstract-ext are then
used to refine the abstraction of the transition system. The pseudo-code of this
algorithm is reported in Fig. 6. Similarly to the satisfiability checking case, the
initial-abstraction function replaces every non-linear multiplication x∗y in the input
transition system and property with a fmul(x, y) term, and adds some simple
axioms about the behaviour of multiplication to the initial-state and transition-
relation formulas of the transition system (see Sect. 4). In the rest of this section,
we describe the abstraction refinement algorithm in more detail.

2 In fact, as already discussed in Sect. 4, the procedure is biased towards unsatisfiable
instances, and might easily diverge on satisfiable ones.
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Fig. 6. Verification of NRA transition systems via abstraction to LRA+EUF.

Counterexample Checking and Refinement. When IC3-LRA+EUF-prove

returns a counterexample trace π̂ for the abstract system Ŝ, we use
SMT-NRA-check-abstract-ext to check for its spuriousness. The function
get-cex-formula builds a formula ψ to feed to SMT-NRA-check-abstract-ext, whose
unsatisfiability implies that π̂ is spurious. The formula ψ is built by unrolling
the transition relation of Ŝ, and optionally adding constraints that restrict the
allowed transitions to be compatible with the states in π̂. Various heuristics are
possible, trading generality for complexity: ψ could be fully constrained by the
states in π̂ (thus checking only one abstract counterexample path per iteration);
it could be only partially constrained (e.g. by considering only the Boolean vari-
ables and/or the state variables occurring only in linear constraints); or it could
be left unconstrained, considering only the length of the abstract counterexam-
ple. In our current implementation (see Sect. 6), we use the last option, i.e. we
only consider the length of π̂ to build a BMC formula that checks for any coun-
terexample of the given length, leaving the investigation of alternative strategies
to future work.

If SMT-NRA-check-abstract-ext returns true, the property is violated. In this
case, we can use the model found by SMT-NRA-check-abstract-ext to build a coun-
terexample trace for the input system and property.

If SMT-NRA-check-abstract-ext returns false, we use the axioms Γ produced
during search to refine the transition system Ŝ, using the procedure shown in
Fig. 7. Essentially, refine-transition-system translates back the axioms from their
unrolled version (i.e. on variables X〈0〉,X〈1〉, . . .) to their “single step” version
(on variables X and X ′), adding each of them either to the initial-states formula
or to the transition relation formula. In case an axiom γ spans more than a
single transition step (lines 9–10 of Fig. 7), we arbitrarily choose to map the
variables with the lowest index as current state variables X, and all the others
as next-state variables X ′. Notice that this might cause some refinement failure,
as discussed in the next paragraph.

Reducing the Number of Axioms to Add. In general, not all the axioms generated
during a call to SMT-NRA-check-abstract-ext are needed to successfully block a
counterexample, especially if eager strategies like those described in Sect. 4 are
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Fig. 7. Refinement of the LRA+EUF transition system.

Fig. 8. Reducing the axioms needed for refinement.

used. In the long run, having a large number of redundant axioms can be quite
harmful for performance. In order to mitigate this problem, we apply a filtering
strategy (based on unsatisfiable cores) to the set of axioms, before adding them
to the transition system. Instead of adding ΓI and ΓT directly to Ŝ, we invoke
the function shown in Fig. 8. Note that due to the flattening of multi-step axioms
described above (lines 9–10 of Fig. 7), the refinement might fail. In this case, our
current implementation simply aborts the execution.3

6 Experimental Analysis

Implementation and Comparisons. We have implemented a prototype
of the IC3-NRA-prove procedure using the IC3 engine of nuXmv [7] for
IC3-LRA+EUF-prove. The code is written in Python, using the PySMT library [17].
Our implementation, benchmarks, and experimental data are available at
https://es-static.fbk.eu/people/griggio/papers/tacas17-ic3-nra.tar.gz. We have
used the following tools for our evaluation.
nuXmv-LRA-static: we apply the upfront abstraction of NRA to LRA proposed
in [8], running the IC3 engine of nuXmv on the resulting transition system.
3 We remark however that so far we have never observed this behaviour during our

experiments.

https://es-static.fbk.eu/people/griggio/papers/tacas17-ic3-nra.tar.gz
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NRA-BMC-{z3, dReal} and NRA-K-induction-{z3, dReal}: we have imple-
mented the BMC [3] and k-induction [29] algorithms in Python (using PySMT),
using either z3 (NRA) or dReal (NRA) as back-end SMT solver.
iSAT3[1e-1] and iSAT3[1e-9]: we have used the latest version of the iSAT3
solver [24], which combines an SMT solver integrating CDCL and inter-
val constraint propagation techniques with an interpolation-based abstrac-
tion/refinement algorithm for verification. iSAT3 supports both transition sys-
tems and software programs encoded as control flow graphs. Similarly to dReal,
iSAT3 may return a “maybe unsafe” answer and provide a candidate solution
identifying the upper and lower bounds on the variables. In the experiments,
iSAT3[1e-1] is the configuration suggested by the iSAT3 authors4 and iSAT3[1e-
9] is the same except that the minimum splitting width (msw) parameter is set
to 10−9. We have used a smaller value for the msw to get more precise answers,
i.e. “safe” or “unsafe”, as suggested in the iSAT3 user manual.

Benchmarks. We have collected a total of 114 NRA benchmarks from various
sources.
Handcrafted. This set contains 14 hand-written instances, 13 safe and 1 unsafe.
HyComp. The second set contains 7 benchmarks (3 safe, 4 unsafe) which are
taken from [11] and converted to NRA transition systems using HyComp [10].
HYST. This is the biggest set, consisting of 65 benchmarks. These are gener-
ated from the Hybrid examples that come with the HYST [2] distribution, by
approximating the continuous time by sampling at a fixed time interval. This
process is done automatically using an extended version of HYST. Since the
generated benchmarks are approximations, we do not know their safety status.
The benchmarks contain mostly non-linear behaviour.
iSAT3 and iSAT3-CFG. The 11 benchmarks in this set (7 safe, 4 unsafe) are
taken from [24] and the iSAT3 examples available online.
nuXmv. In this set, we have 2 safe benchmarks which we collected from the
nuXmv users’ mailing list. These benchmarks have complex boolean structure.
SAS13. These 13 benchmarks are generated from the C programs used in [5],
but interpreted over NRA instead of the theory of IEEE floating-point numbers.
This makes some of the instances unsafe.
TCM. We have generated 2 safe benchmarks from the Simulink models (taken
from the case study [6]) by first generating the C code using the Embedded
Coder5 and then encoding the program into a symbolic transition system.

Results. We ran our experiments on a cluster of machines with 2.67 GHz Xeon
X5650 CPUs and 96 GB of RAM, running Scientific Linux 6.7. We used 6 GB
memory limit and 3600 s CPU timeout.

4 -I --use-craig-interpolation --use-cegar --cegar-abstraction-inductive

--interpolant-rules-mcmillan --interpolant-a-biased

--interpolation-offset --interpolant-offset 2.
5 https://www.mathworks.com/products/embedded-coder/.

https://www.mathworks.com/products/embedded-coder/
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Table 1. Summary of experimental results.
Total

H
andcrafted

H
yC

om
p

H
Y
ST

ISA
T
3

ISA
T
3-C

F
G

nuX
m
v

SA
S13

T
C
M

(114) (14) (7) (65) (1) (10) (2) (13) (2)
IC3-NRA-prove 60/15 9/1 3/0 33/7 0/0 6/2 2/0 5/5 2/0
iSAT3[1e-1] 48/2(47) 2/0(8) 0/0(3) 34/2(23) 0/0 6/0(4) 0/0 4/0(9) 2/0
iSAT3[1e-9] 47/2(19) 2/0(3) 0/0(2) 32/2(3) 0/0 6/0(3) 0/0 5/0(8) 2/0
NRA-K-induction-Z3 22/25 2/1 0/2 12/15 0/0 6/2 0/0 0/5 2/0
NUXMV-LRA-static 37/0 4/0 1/0 19/0 0/0 4/0 2/0 5/0 2/0
NRA-BMC-Z3 0/26 0/1 0/2 0/15 0/0 0/3 0/0 0/5 0/0
NRA-K-induction-DREAL 16/0(32) 2/0(4) 0/0(2) 9/0(19) 0/0 5/0(2) 0/0 0/0(5) 0/0
NRA-BMC-DREAL 0/0(39) 0/0(8) 0/0(2) 0/0(19) 0/0 0/0(3) 0/0 0/0(7) 0/0
virtual-best 66/26 9/1 3/2 38/15 0/0 7/3 2/0 5/5 2/0

Each column shows a benchmark family, and each entry gives the number of safe/unsafe
instances found. For tools working over interval arithmetic, the number of “maybe unsafe”
is reported in parentheses.

The results are summarized in Tables 1 and 2 and in Fig. 9. The plots show the
time to solve an instance on the x-axis and the total number of solved instances
on the y-axis. Table 1 reports a summary of the solved instances by family,
whereas Table 2 shows a comparitive analysis by reporting for each tool the
number of uniquely solved instances and the difference of solved instances w.r.t
IC3-NRA-prove. We can make the following observations from the experimental
results:
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Table 2. Comparitive summary of total solved benchmarks.

# Solved # Uniquely Solved
Difference wrt.
IC3-NRA-prove

Gained Lost

IC3-NRA-prove 60/15 9/0 - - -
NUXMV-LRA-static 37/0 0/0 -38 1/0 24/15
iSAT3[1e-1] 48/2(47)

4/0
-25 4/0 16/13

iSAT3[1e-9] 47/2(19) -26 3/0 16/13
NRA-K-induction-Z3 22/25

0/11
-28 2/11 40/1

NRA-BMC-Z3 0/26 -49 0/11 60/0
NRA-K-induction-DREAL 16/2(32)

0/0
-59 2/0 46/15

NRA-BMC-DREAL 0/0(39) -75 0/0 60/15

virtual-best 66/26 - 17 6/11 0

– IC3-NRA-prove is the best performer overall, and it significantly outperforms
all the other approaches on safe instances (where it can solve 9 problems that
are out of reach for all the other tools). Interestingly, despite its simplicity,
our model finding approach (as outlined in Sect. 4) is surprisingly effective,
allowing IC3-NRA-prove to find 15 counterexample traces.

– The simple abstraction proposed in [8] is quite effective for many families,
allowing nuXmv-LRA-static to verify more properties than the approaches
based on K-induction with an NRA solver. However, IC3-NRA-prove results
in a clear and very significant improvement, solving more than twice as many
instances than nuXmv-LRA-static (and losing only 1).

– None of the other tools (with the exception of nuXmv-LRA-static) is able to
solve any safe benchmark in the HyComp and nuXmv families. These bench-
marks have a non-trivial Boolean structure and a significant linear compo-
nent. Both IC3-NRA-prove and nuXmv-LRA-static are able to fully exploit
the effectiveness of the underlying IC3 engine of nuXmv, outperforming the
competitors. However, IC3-NRA-prove is very competitive also on the HYST
family, whose instances are mostly non-linear and have very little Boolean
structure.

– Increasing the default precision of iSAT3 significantly reduces the number of
“maybe unsafe” answers, but it doesn’t seem to help in solving more bench-
marks. In fact, we remark that even with the increased precision iSAT3[1e-9]
classifies 2 safe instances as “maybe unsafe” (whereas in the default configu-
ration, 6 safe instances are classified as “maybe unsafe”).

7 Conclusions and Future Work

We presented a novel abstraction-refinement approach to the verification of
transition systems with nonlinear dynamics expressed in the NRA theory. We
abstract non-linear multiplication as an uninterpreted function, leveraging effi-
cient invariant checkers for transition systems over LRA and EUF to solve the
problem in the abstract space. In case of spurious counterexample, the abstrac-
tion of multiplication is incrementally refined by introducing suitable axioms,
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based on the idea of tangent planes. An extensive experimental evaluation
demonstrates that the proposed approach is significantly more effective than
approaches directly based on SMT(NRA) solving.

This work opens up several important directions. First, we are going to
improve the implementation, by integrating all the steps within the nuXmv [7]
model checker, and to perform a thorough analysis of the various heuristic
choices. Second, we will investigate the potential of the approach for SMT, both
for other theories (e.g. NIA) and for extended functionalities (e.g. interpolation).
We will also extend the scope of the approach to deal with transcendental func-
tions, look-up tables, and partially axiomatized functions (e.g. gain functions
known to be monotonic and of restricted co-domain).

Finally, we are going to investigate the generalization of the approach from
transition systems to continuous-time hybrid systems with nonlinear character-
istic functions.

Acknowledgement. We greatly thank the iSAT3 team for providing the latest
iSAT3 executable and iSAT3-CFG benchmarks. We also thank James Davenport for
the fruitful discussions on CAD techniques and finding solutions in NRA.
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