Skip to main content

Intraoperative Assessment with Computer Navigation

  • Chapter
  • First Online:
Soft Tissue Balancing in Total Knee Arthroplasty

Abstract

Soft tissue balancing in total knee replacement (TKR) is paramount to obtain optimal stability of the joint, improve kinematics, produce equal load on each side of the prosthetic components and decrease component wear [1]. Whilst the role of computer navigation is well established as the most accurate means of obtaining desired coronal and sagittal alignment, its role in soft tissue balancing is more recent. The use of navigation data allows the surgeon to recognise imbalance including midflexion instability, excessive tightness in flexion, failure to resolve flexion contractures and persisting pathological recurvatum. Navigation derived information allows the surgeon a real time assessment of stability throughout the flexion arc and importantly these objective measurements enable the surgeon to address the abnormalities and confirm resolution before the patient leaves the operating room

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seon JK et al. In vivo stability of total knee arthroplasty using a navigation system. Int Orthop. 2007;31(1):45–8.

    Article  PubMed  Google Scholar 

  2. Sharkey PF et al. Insall award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res. 2002;404:7–13.

    Article  Google Scholar 

  3. Roche M, Elson L, Anderson C. Dynamic soft tissue balancing in total knee arthroplasty. Orthop Clin North Am. 2014;45(2):157–65.

    Article  PubMed  Google Scholar 

  4. Kurtz SM et al. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res. 2009;467(10):2606–12.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Blakeney WG, Khan RJ, Wall SJ. Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2011;93(15):1377–84.

    Article  PubMed  Google Scholar 

  6. Matziolis G et al. A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J Bone Joint Surg Am. 2007;89(2):236–43.

    PubMed  Google Scholar 

  7. Decking R et al. Leg axis after computer-navigated total knee arthroplasty: a prospective randomized trial comparing computer-navigated and manual implantation. J Arthroplasty. 2005;20(3):282–8.

    Article  PubMed  Google Scholar 

  8. Hetaimish BM et al. Meta-analysis of navigation vs conventional total knee arthroplasty. J Arthroplasty. 2012;27(6):1177–82.

    Article  PubMed  Google Scholar 

  9. Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg Br. 1991;73(5):709–14.

    CAS  PubMed  Google Scholar 

  10. Choong PF, Dowsey MM, Stoney JD. Does accurate anatomical alignment result in better function and quality of life? Comparing conventional and computer-assisted total knee arthroplasty. J Arthroplasty. 2009;24(4):560–9.

    Article  PubMed  Google Scholar 

  11. de Steiger RN, Liu YL, Graves SE. Computer navigation for total knee arthroplasty reduces revision rate for patients less than sixty-five years of age. J Bone Joint Surg Am. 2015;97(8):635–42.

    Article  PubMed  Google Scholar 

  12. Griffin FM, Insall JN, Scuderi GR. Accuracy of soft tissue balancing in total knee arthroplasty. J Arthroplasty. 2000;15(8):970–3.

    Article  CAS  PubMed  Google Scholar 

  13. Dennis DA et al. Gap balancing versus measured resection technique for total knee arthroplasty. Clin Orthop Relat Res. 2010;468(1):102–7.

    Article  PubMed  Google Scholar 

  14. Arima J et al. Femoral rotational alignment, based on the anteroposterior axis, in total knee arthroplasty in a valgus knee. A technical note. J Bone Joint Surg Am. 1995;77(9):1331–4.

    Article  CAS  PubMed  Google Scholar 

  15. Berger RA et al. Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res. 1993;286:40–7.

    Google Scholar 

  16. Olcott CW, Scott RD. A comparison of 4 intraoperative methods to determine femoral component rotation during total knee arthroplasty. J Arthroplasty. 2000;15(1):22–6.

    Article  CAS  PubMed  Google Scholar 

  17. Jerosch J et al. Interindividual reproducibility in perioperative rotational alignment of femoral components in knee prosthetic surgery using the transepicondylar axis. Knee Surg Sports Traumatol Arthrosc. 2002;10(3):194–7.

    Article  CAS  PubMed  Google Scholar 

  18. Poilvache PL et al. Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop Relat Res. 1996;331:35–46.

    Article  Google Scholar 

  19. Griffin FM, Insall JN, Scuderi GR. The posterior condylar angle in osteoarthritic knees. J Arthroplasty. 1998;13(7):812–5.

    Article  CAS  PubMed  Google Scholar 

  20. Parker DA et al. Safety of combined use of local anesthetic infiltration and reinfusion drains in total knee arthroplasty. J Arthroplasty. 2009;24(6):918–24.

    Article  PubMed  Google Scholar 

  21. Widmer B et al. Incidence and severity of complications due to femoral nerve blocks performed for knee surgery. Knee. 2013;20(3):181–5.

    Article  PubMed  Google Scholar 

  22. Widmer BJ et al. Is femoral nerve block necessary during total knee arthroplasty?: a randomized controlled trial. J Arthroplasty. 2012;27(10):1800–5.

    Article  PubMed  Google Scholar 

  23. Smith TO, Hing CB. Is a tourniquet beneficial in total knee replacement surgery? A meta-analysis and systematic review. Knee. 2010;17(2):141–7.

    Article  PubMed  Google Scholar 

  24. Lustig S et al. Sagittal placement of the femoral component in total knee arthroplasty predicts knee flexion contracture at one-year follow-up. Int Orthop. 2012;36(9):1835–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Whiteside LA. Soft tissue balancing: the knee. J Arthroplasty. 2002;17(4 Suppl 1):23–7.

    Article  PubMed  Google Scholar 

  26. Nodzo SR, Franceschini V, Gonzalez Della Valle A. Intraoperative load-sensing variability during cemented, posterior-stabilized total knee arthroplasty. J Arthroplasty. 2017;32(1):66–70.

    Google Scholar 

  27. Saragaglia D, Chaussard C, Rubens-Duval B. Navigation as a predictor of soft tissue release during 90 cases of computer-assisted total knee arthroplasty. Orthopedics. 2006;29(10 Suppl):S137–8.

    PubMed  Google Scholar 

  28. Engh GA. The difficult knee: severe varus and valgus. Clin Orthop Relat Res. 2003;416:58–63.

    Article  Google Scholar 

  29. Matsumoto T et al. Soft tissue balance measurement in posterior-stabilized total knee arthroplasty with a navigation system. J Arthroplasty. 2009;24(3):358–64.

    Article  PubMed  Google Scholar 

  30. Joseph J et al. The use of navigation to achieve soft tissue balance in total knee arthroplasty - a randomised clinical study. Knee. 2013;20(6):401–6.

    Article  CAS  PubMed  Google Scholar 

  31. Song EK et al. Comparative study of stability after total knee arthroplasties between navigation system and conventional techniques. J Arthroplasty. 2007;22(8):1107–11.

    Article  PubMed  Google Scholar 

  32. Pang HN et al. Computer-assisted gap balancing technique improves outcome in total knee arthroplasty, compared with conventional measured resection technique. Knee Surg Sports Traumatol Arthrosc. 2011;19(9):1496–503.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myles R. J. Coolican MB, BS, FRACS, FAOrthA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Regazzola, G.V.M., Coolican, M.R.J. (2017). Intraoperative Assessment with Computer Navigation. In: Matsuda, S., Lustig, S., van der Merwe, W. (eds) Soft Tissue Balancing in Total Knee Arthroplasty. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54082-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54082-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54081-7

  • Online ISBN: 978-3-662-54082-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics