Skip to main content

Composites Reinforced with Hollow Natural Organic Fibrous Structures

  • Chapter
  • First Online:
Porous lightweight composites reinforced with fibrous structures
  • 910 Accesses

Abstract

Light-weight composites are preferred for automotive, aircraft, building, and other applications as they can provide better performance at lower weight per unit area. Reducing the weight of the composite also means using lesser materials which lowers costs. For several decades, attempts have been made to develop light-weight composites using aluminum and other metals. However, recent focus on the use of biodegradable and sustainable materials makes metallic materials undesirable for use. Agricultural residues and other organic biomass are renewable, sustainable, and available in abundance at low cost. Several of these residues and byproducts such as straw and feathers are light-weight and porous and ideally suited as reinforcement in composites. Composites have been developed using these hollow fibrous structures with the traditional synthetic polymer based matrices and also biodegradable matrices such as poly(lactic acid). Since natural materials are hydrophilic and synthetic polymers are hydrophobic, compatibilizers are necessary to improve properties. Injection and compression molding are the most common methods used to fabricate the composites. Natural hollow fibrous structures show good promise as reinforcements, but several challenges and limitations have to be overcome to enable commercial production and use of such composites feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant based natural fiber reinforced polymer composites. Composit Part B 43:2883–2892

    Article  Google Scholar 

  2. Panthapulakkal S, Zereshkian A, Sain M (2006) Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites. Bioresour Technol 97:265–272

    Article  Google Scholar 

  3. Panthapulakkal S, Sain M (2014) The use of wheat straw fibers as reinforcements in composites. In: Biofibers reinforcement in composite materials. Elsevier, Amsterdam

    Google Scholar 

  4. Pan M, Zhou D, Bousmina M, Zhang SY (2009) Effects of wheat straw fiber content and characteristics and coupling agent concentration on the mechanical properties of wheat straw fiber polypropylene composites. J Appl Polym Sci 113:1000–1007

    Article  Google Scholar 

  5. Pan M, Zhou D, Deng J, Zhang SY (2009) Preparation and properties of wheat straw fiber polypropylene composites I investigation of surface treatments on the wheat straw fiber. J Appl Polym Sci 114:3049–3056

    Article  Google Scholar 

  6. Pfister DP, Larock RC (2010) Green composites from a conjugated linseed oil based resin and wheat straw. Composites Part A 41:1279–1288

    Article  Google Scholar 

  7. Reddy RC, Sardashti AP, Simon LC (2010) Preparation and characterization of polypropylene wheat straw clay composites. Compos Sci Technol 70:1674–1680

    Article  Google Scholar 

  8. Nyambo C, Mohanty AK, Misra M (2011) Effect of maleated compatibilizer and performance of PLA/wheat straw based green composites. Macromol Mater Eng 296:710–718

    Article  Google Scholar 

  9. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565

    Article  Google Scholar 

  10. Ahankari SS, Mohanty AK, Misra M (2011) Mechanical behavior of agro residue reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) green composites: a comparison with traditional polypropylene composites. Compos Sci Technol 71:653–657

    Article  Google Scholar 

  11. Pradhan R, Misra M, Erickson L, Mohanty A (2010) Compostability and biodegradation study of PLA-wheat straw based green composites in simulated compositing bioreactor. Bioresour Technol 101:8489–8491

    Article  Google Scholar 

  12. Chen J, Su M, Ye J, Yang Z, Cai Z, Yan H, Hong J (2014) All straw fiber composites: benzylated straw as matrix and additional straw fiber reinforced composites. Polym Compos 35:419–426

    Article  Google Scholar 

  13. Bassyouni M, Waheed S, Hasan UL (2015) Use of rice straw and husk fibers as reinforcements in composites. In: Faruk O, Sain M (eds) Biofiber reinforcements in composite materials. Elsevier, Amsterdam, pp 385–422

    Chapter  Google Scholar 

  14. Basta AH, El-Saied H, Lofty VF (2014) Performance assessment of deashed and dewaxed rice straw on improving the quality of RS-based composites. RSC Adv 4:21794–21801

    Article  Google Scholar 

  15. Yao F, Wu Q, Lei Y, Xu Y (2008) Rice straw fiber reinforced high density polyethylene composite: effect of fiber type and loading. Ind Crop Prod 28:63–72

    Article  Google Scholar 

  16. Jayamani E, Hamdan S, Rahman MR, Bakri MKB (2015) Study of absorption co-efficients and characterization of rice straw stem fibers reinforced polypropylene composites. Bioresources 10(2):3378–3392

    Article  Google Scholar 

  17. Qin L, Qiu J, Liu M, Ding S, Shao S, Shao L, Lu S, Zhang G, Zhao Y, Fu X (2011) Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem Eng J 166(2):772–778

    Article  Google Scholar 

  18. Zhao Y, Qiu J, Feng H, Zhang M, Lei L, Wu X (2011) Improvement of tensile and thermal properties of poly(lactic acid) composites with admicellar-treated rice straw fiber. Chem Eng J 173(2):659–666

    Article  Google Scholar 

  19. Bassyouni M, Taha I, Shereen MS, Abdel-hamid MS, Steuernagel L (2012) Physio-mechanical properties of chemically treated polypropylene rice straw biocomposites. J Reinf Plast Compos 31(5):303–312

    Article  Google Scholar 

  20. Wu Y, Wang S, Zhou D, Zhang Y, Wang X, Yang R (2012) Biodegradable polyvinyl alcohol nanocomposites made from rice straw fibrils: mechanical and thermal properties. J Compos Mater 47(2):1449–1459

    Google Scholar 

  21. Liu J, Jia C, He C (2012) Rice straw and cornstarch biodegradable composites. AASRI Procedia 3:83–88

    Article  Google Scholar 

  22. Sakai E, Qiu JH, Murata T, Kazushi I, Takahashi T (2011) Degradation characteristics of rice straw/poly(lactic acid) composites. Adv Mater Res 391–392:1268–1272

    Article  Google Scholar 

  23. Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fiber reinforced biocomposites: a review. Mater Design 42:353–368

    Article  Google Scholar 

  24. Liu K, Takagi H, Osugi R, Yang Z (2012) Effect of physiochemical structure of natural fiber on transverse thermal conductivity of unidirectional abaca/bamboo fiber composites. Composites Part A 43:1234–1241

    Article  Google Scholar 

  25. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Composit Part A 40:469–475

    Article  Google Scholar 

  26. Luz SM, Goncalves AR, Del Arco AP (2007) Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites. Composit Part A 38:1455–1461

    Article  Google Scholar 

  27. Mulinari DR, Voorwald HJC, Cioffi MOH, Silva MLCP, Cruz TG, Saron C (2009) Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Compos Sci Technol 69:214–219

    Article  Google Scholar 

  28. Mileo PC, Mulinari DR, Baptista CARP, Rocha GJM, Goncalves AR (2011) Mechanical behavior of polyurethane from castor oil reinforced sugarcane straw cellulose composites. Procedia Eng 10:2068–2073

    Article  Google Scholar 

  29. Razali N, Salit MS, Jawaid M, Ishak MR, Lazim Y (2015) A study on chemical composition, physical, tensile, morphological and thermal properties of Roselle fiber, effect of fiber maturity. Bioresources 10(1):1803–1182

    Article  Google Scholar 

  30. Chauhan A, Kaith B (2012) Accreditation of novel roselle grafted fiber reinforced biocomposites. J Eng Fiber Fabr 7(2):66–76

    Google Scholar 

  31. Reddy N, Yang Y (2010) Non-traditional lightweight polypropylene composites reinforced with milkweed floss. Polym Int 59:884–890

    Article  Google Scholar 

  32. Bledzki AK, Franciszczak P, Osman Z, Elbadawi M (2015) Polypropylene biocomposites reinforced with softwood, abaca, jute and kenaf fibers. Ind Crop Prod 70:91–98

    Article  Google Scholar 

  33. Shibata S, Cao Y, Fukumoto I (2006) Lightweight laminate composites made from kenaf and polypropylene fibers. Polym Test 25:142–148

    Article  Google Scholar 

  34. Bulota M, Budtova T (2015) Highly porous and light-weight flax/PLA composites. Ind Crop Prod 74:132–138

    Article  Google Scholar 

  35. Tran LQN, Minh TN, Fuentes CA, Chi TT, Vuure AWV, Verpoest I (2015) Investigation of microstructure and tensile properties of porous natural coir fiber for use in composite materials. Ind Crop Prod 65:437–445

    Article  Google Scholar 

  36. Mir SS, Nafsin N, Hasan M, Hasan N, Hassan A (2013) Improvement of physic-mechanical properties of coir polypropylene biocomposites by fiber chemical treatment. Mater Design 52:251–257

    Article  Google Scholar 

  37. Ramanaiah K, Ratna Prasad AV, Reddy KHC (2012) Effect of fiber loading on mechanical properties of Borassus seed shoot fiber reinforced polyester composites. J Mater Environ Sci 3(3):374–378

    Google Scholar 

  38. Rao KMM, Rao KM, Prasad AVR (2010) Fabrication and testing of natural fibre composites, Vakka, sisal, bamboo and banana. Mater Design 31:508–513

    Article  Google Scholar 

  39. Prasad AVR, Rao KM (2011) Mechanical properties of natural fiber reinforced polyester composites: Jowar, sisal and bamboo. Mater Design 32:4658–4663

    Article  Google Scholar 

  40. Chattopadhyay SK, Singh S, Pramanik N, Niyogi UK, Khandal RK, Uppaluri R, Ghoshal AK (2011) Biodegradability studies on natural fibers reinforced polypropylene composites. J Appl Polym Sci 121:2226–2232

    Article  Google Scholar 

  41. Flandez J, Gonzalez I, Resplandis JB, Mansouri NE, Vilaseca F, Mutje P (2012) Management of corn stalk waste as reinforcement for polypropylene injection molded composites. Bioresources 7(2):1836–1849

    Article  Google Scholar 

  42. Reddy N, Yang Y (2007) Natural cellulose fibers from switchgrass with tensile properties similar to cotton and linen. Biotechnol Bioeng 97:1012–1027

    Article  Google Scholar 

  43. Zou Y, Xu H, Yang Y (2010) Lightweight polypropylene composites reinforced by long switchgrass stems. J Polym Environ 18:464–473

    Article  Google Scholar 

  44. Reddy N (2015) Non-food industrial applications of poultry feathers. Waste Manag 45:91–107

    Article  Google Scholar 

  45. Huda S, Yang Y (2008) Composites from ground chicken quill and polypropylene. Compos Sci Technol 68:790–798

    Article  Google Scholar 

  46. Barone JR, Schmidt WF (2005) Polyethylene reinforced with keratin fibers obtained from chicken feathers. Compos Sci Technol 65(2):173–1811

    Article  Google Scholar 

  47. Barone JR, Schmidt WF, Liebner CFE (2005) Compounding and molding of polyethylene composites reinforced with keratin feather fiber. Compos Sci Technol 65:683–692

    Article  Google Scholar 

  48. Ghani SA, Tan SJ, Yeng TS (2015) Properties of chicken feather fiber filled low density polyethylene composites: the effect of polyethylene grafted maleic anhydride. Polym-Plast Technol Eng 52:495–500

    Article  Google Scholar 

  49. Yang Y, Reddy N (2013) Utilizing discarded plastic bags as matrix material for composites reinforced with chicken feathers. J Appl Polym Sci 130:307–312

    Article  Google Scholar 

  50. Flores-Hernandez CG, Colin-Cruz A, Velasco-Santos C, Castano VM, Rivera-Armenta JL, Almendarez-Camarillo A, Garcia-Casillas PE, Martinez-Herandez AL (2014) All green composites from fully renewable biopolymers: Chitosan-starch reinforced with keratin from feathers. Polymers 6:686–705

    Article  Google Scholar 

  51. Carrillo F, Rahhali A, Canavate J, Colom X (2013) Biocomposites using waste whole chicken feathers and thermoplastic matrices. J Reinf Plast Compos 32(19):1419–1429

    Article  Google Scholar 

  52. Reddy N, Jiang J, Yang Y (2014) Biodegradable composites containing chicken feathers as matrix and jute fibers as reinforcement. J Polym Environ 22:310–317

    Article  Google Scholar 

  53. Supri AG, Aizat AE, Yazid MIM, Masturina M (2015) Chicken feather fibers recycled high density polyethylene composites: the effect of Ɛ-caprolactum. J Thermoplast Compos Mater 28(3):327–339

    Article  Google Scholar 

  54. Huda S, Yang Y (2009) Feather fiber reinforced light-weight composites with good acoustic properties. J Polym Environ 17:131–142

    Article  Google Scholar 

  55. Reddy N, Yang Y (2010) Light-weight polypropylene composites reinforced with whole chicken feathers. J Appl Polym Sci 116:3668–3675

    Google Scholar 

  56. Kiew KS, Rahman MR, Hamdan S, Talibb ZA (2013) Maleic anhydride modified unsaturated polyester composites reinforced with chicken feather fiber: dielectric and morphological study. World Appl Sci J 25(6):899–907

    Google Scholar 

  57. Cheng S, Lau K, Liu T, Zhao Y, Lam P, Yin Y (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composit Part B 40:650–654

    Article  Google Scholar 

Download references

Acknowledgments

Author thanks the Department of Biotechnology, Ministry of Science and Technology, Government of India for support through the Ramalingaswami Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Reddy, N. (2017). Composites Reinforced with Hollow Natural Organic Fibrous Structures. In: Yang, Y., Yu, J., Xu, H., Sun, B. (eds) Porous lightweight composites reinforced with fibrous structures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53804-3_2

Download citation

Publish with us

Policies and ethics