Skip to main content

Solid Phase Microextraction for Sensing Freely Dissolved Analytes in Complex Water Sample

  • Chapter
  • First Online:
Solid Phase Microextraction

Abstract

Ever since its invention, solid phase microextraction (SPME) has been widely used for aqueous sampling. In recent years, this technique has received increasing attention for the analysis of complex water sample because of its capability of sensing freely dissolved analytes in the complex matrix. In this chapter, the development of negligible depletion SPME (nd-SPME) for the determination of freely dissolved analytes in complex water samples is reviewed. The fundamentals and sampling conditions of nd-SPME are first discussed. Then, the application of nd-SPME for measurement of sorption coefficients in complex matrixes is summarized. In addition, the calibration methods of nd-SPME are discussed in detail, especially the effect of complex matrix on the sampling kinetic. For the first time, the advances of complex matrix effects including retarded and enhanced effects on the SPME sampling kinetic are fully explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leenheer JA, Croue JP (2003) Peer reviewed: characterizing aquatic dissolved organic matter. Environ Sci Technol 37:18A–26A

    Article  CAS  Google Scholar 

  2. Delle Site A (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref Data 30:187–439. doi:10.1063/1.1347984

    Article  CAS  Google Scholar 

  3. Escher BI, Cowan-ellsberry CE, Dyer S et al (2011) Protein and lipid binding parameters in rainbow trout (Oncorhynchus mykiss) blood and liver fractions to extrapolate from an in vitro metabolic degradation assay to in vivo bioaccumulation potential of hydrophobic organic chemicals. Chem Res Toxicol 24:1134–1143. doi:10.1021/tx200114y

    Article  CAS  Google Scholar 

  4. Schacht VJ, Grant SC, Escher BI et al (2016) Solubility enhancement of dioxins and PCBs by surfactant monomers and micelles quantified with polymer depletion techniques. Chemosphere 152:99–106. doi:10.1016/j.chemosphere.2016.02.122

    Article  CAS  Google Scholar 

  5. Poerschmann J, Kopinke FD (2001) Sorption of very hydrophobic organic compounds (VHOCs) on dissolved humic organic matter (DOM). 2. Measurement of sorption and application of a Flory-Huggins concept to interpret the data. Environ Sci Technol 35:1142–1148

    Article  CAS  Google Scholar 

  6. Bejarano AC, Chandler GT, Decho AW (2005) Influence of natural dissolved organic matter (DOM) on acute and chronic toxicity of the pesticides chlorothalonil, chlorpyrifos and fipronil on the meiobenthic estuarine copepod Amphiascus tenuiremis. J Exp Mar Biol Ecol 321:43–57. doi:10.1016/j.jembe.2005.01.003

    Article  CAS  Google Scholar 

  7. Lundqvist A, Bertilsson S, Goedkoop W (2012) Interactions with DOM and biofilms affect the fate and bioavailability of insecticides to invertebrate grazers. Ecotoxicology 21:2398–2408. doi:10.1007/s10646-012-0995-z

    Article  CAS  Google Scholar 

  8. Worrall F, Fernandez-Perez M, Johnson AC et al (2001) Limitations on the role of incorporated organic matter in reducing pesticide leaching. J Contam Hydrol 49:241–262. doi:10.1016/S0169-7722(00)00197-2

    Article  CAS  Google Scholar 

  9. Spark KM, Swift RS (2002) Effect of soil composition and dissolved organic matter on pesticide sorption. Sci Total Environ 298:147–161

    Article  CAS  Google Scholar 

  10. Thevenot M, Dousset S, Hertkorn N et al (2009) Interactions of diuron with dissolved organic matter from organic amendments. Sci Total Environ 407:4297–4302. doi:10.1016/j.scitotenv.2009.04.021

    Article  CAS  Google Scholar 

  11. Ding Q, Wu HL, Xu Y et al (2011) Impact of low molecular weight organic acids and dissolved organic matter on sorption and mobility of isoproturon in two soils. J Hazard Mater 190:823–832. doi:10.1016/j.jhazmat.2011.04.003

    Article  CAS  Google Scholar 

  12. Auger JP, Richard C, Andreux F (1999) Effect of light on humic substances: production of reactive species: humic substances. Analusis 27:387–390

    Article  Google Scholar 

  13. Dimou AD, Sakkas VA, Albanis TA (2004) Trifluralin photolysis in natural waters and under the presence of isolated organic matter and nitrate ions: Kinetics and photoproduct analysis. J Photochem Photobiol A Chem 163:473–480. doi:10.1016/j.jphotochem.2004.02.001

    Article  CAS  Google Scholar 

  14. Bachman J, Patterson HH (1999) Photodecomposition of the carbamate pesticide carbofuran: kinetics and the influence of dissolved organic matter. Environ Sci Technol 33:874–881. doi:10.1021/es9802652

    Article  CAS  Google Scholar 

  15. Heringa MBB, Hermens JLMLM (2003) Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME). TrAC Trends Anal Chem 22:575–587. doi:10.1016/S0165-9936(03)01006-9

    Article  CAS  Google Scholar 

  16. Kramer NI, Krismartina M, Rico-Rico Á et al (2012) Quantifying processes determining the free concentration of phenanthrene in basal cytotoxicity assays. Chem Res Toxicol 25:436–445. doi:10.1021/tx200479k

    Article  CAS  Google Scholar 

  17. Broeders JJW, Blaauboer BJ, Hermens JLM (2011) Development of a negligible depletion-solid phase microextraction method to determine the free concentration of chlorpromazine in aqueous samples containing albumin. J Chromatogr A 1218:8529–8535. doi:10.1016/j.chroma.2011.09.064

    Article  CAS  Google Scholar 

  18. Bondarenko S, Gan J (2009) Simultaneous measurement of free and total concentrations of hydrophobic compounds. Environ Sci Technol 43:3772–3777

    Article  CAS  Google Scholar 

  19. De Perre C, Le Ménach K, Ibalot F et al (2014) Development of solid-phase microextraction to study dissolved organic matter—polycyclic aromatic hydrocarbon interactions in aquatic environment. Anal Chim Acta 807:51–60. doi:10.1016/j.aca.2013.11.026

    Article  Google Scholar 

  20. Urrestarazu Ramos E, Meijer SN, Vaes WHJ et al (1998) Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals. Environ Sci Technol 32:3430–3435. doi:10.1021/es980274a

    Article  Google Scholar 

  21. Burkhard LP (2000) Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environ Sci Technol 34:4663–4668

    Article  CAS  Google Scholar 

  22. Pawliszyn J (2012) Handbook of solid phase microextraction. Elsevier, London

    Google Scholar 

  23. Vaes WHJ, Urrestarazu Ramos E, Verhaar HJM et al (1996) Measurement of the free concentration using solid-phase microextraction: binding to protein. Anal Chem 68:4463–4467. doi:10.1021/ac960337c

    Article  CAS  Google Scholar 

  24. Ai J (1997) Solid phase microextraction for quantitative analysis in nonequilibrium situations. Anal Chem 69:1230–1236. doi:10.1021/ac9609541

    Article  CAS  Google Scholar 

  25. Hu X, Liu J, Mayer P, Jiang G (2008) Impacts of some environmentally relevant parameters on the sorption of polycyclic aromatic hydrocarbons to aqueous suspensions of fullerene. Environ Toxicol Chem 27:1868–1874. doi:10.1897/08-009.1

    Article  CAS  Google Scholar 

  26. Bueno M, Zapata J, Ferreira V (2014) Simultaneous determination of free and bonded forms of odor-active carbonyls in wine using a headspace solid phase microextraction strategy. J Chromatogr A 1369:33–42. doi:10.1016/j.chroma.2014.10.004

    Article  CAS  Google Scholar 

  27. Poerschmann J, Kopinke FD, Pawliszyn J (1997) Solid phase microextraction to study the sorption of organotin compounds onto particulate and dissolved humic organic matter. Environ Sci Technol 31:3629–3636. doi:10.1021/es970377d

    Article  CAS  Google Scholar 

  28. Hu X, Li J, Chen Q et al (2014) Combined effects of aqueous suspensions of fullerene and humic acid on the availability of polycyclic aromatic hydrocarbons: evaluated with negligible depletion solid-phase microextraction. Sci Total Environ 493:12–21. doi:10.1016/j.scitotenv.2014.05.107

    Article  CAS  Google Scholar 

  29. Hu X, Liu J, Zhou Q et al (2010) Bioavailability of organochlorine compounds in aqueous suspensions of fullerene: evaluated with medaka (Oryzias latipes) and negligible depletion solid-phase microextraction. Chemosphere 80:693–700. doi:10.1016/j.chemosphere.2010.05.042

    Article  CAS  Google Scholar 

  30. Pang L, Liu J, Yin Y, Shen M (2013) Evaluating the sorption of organophosphate esters to different sourced humic acids and its effects on the toxicity to Daphnia magna. Environ Toxicol Chem 32:2755–2761. doi:10.1002/etc.2360

    Article  CAS  Google Scholar 

  31. Rico-Rico A, Droge STJ, Hermens JLM (2010) Predicting sediment sorption coefficients for linear alkylbenzenesulfonate congeners from polyacrylate-water partition coefficients at different salinities. Environ Sci Technol 44:941–947. doi:10.1021/es902453s

    Article  CAS  Google Scholar 

  32. Heringa MB, Pastor D, Algra J et al (2002) Negligible depletion solid-phase microextraction with radiolabeled analytes to study free concentrations and protein binding: an example with [3H]estradiol. Anal Chem 74:5993–5997. doi:10.1021/ac0204552

    Article  CAS  Google Scholar 

  33. Mackenzie K, Georgi A, Kumke M, Kopinke FD (2002) Sorption of pyrene to dissolved humic substances and related model polymers. 2. Solid-phase microextraction (SPME) and fluorescence quenching technique (FHT) as analytical methods. Environ Sci Technol 36:4403–4409

    Article  CAS  Google Scholar 

  34. Jia F, Cui X, Wang W et al (2012) Using disposable solid-phase microextraction (SPME) to determine the freely dissolved concentration of polybrominated diphenyl ethers (PBDEs) in sediments. Environ Pollut 167:34–40. doi:10.1016/j.envpol.2012.03.025

    Article  CAS  Google Scholar 

  35. Gorecki T, Pawliszyn J (1997) Effect of sample volume on quantitative analysis by solid-phase microextraction. Part 1. Theoretical considerations. Analyst (Cambridge, United Kingdom) 122:1079–1086. doi:10.1039/a701303e

  36. Parkerton TF, Stone Ma, Letinski DJ (2000) Assessing the aquatic toxicity of complex hydrocarbon mixtures using solid phase microextraction. Toxicol Lett 112–113:273–282. doi:10.1016/S0378-4274(99)00237-4

    Article  Google Scholar 

  37. Poerschmann J, Schultze-Nobre L (2014) Sorption determination of phenols and polycyclic aromatic hydrocarbons in a multiphase constructed wetland system by solid phase microextraction. Sci Total Environ 482–483:234–240. doi:10.1016/j.scitotenv.2014.03.004

    Article  Google Scholar 

  38. Ke R, Wang Z, Huang S, Khan SU (2007) Accurate quantification of freely dissolved organochlorine pesticides in water in the presence of dissolved organic matter using triolein-embedded cellulose acetate membrane. Anal Bioanal Chem 387:2871–2879. doi:10.1007/s00216-007-1174-6

    Article  CAS  Google Scholar 

  39. Chen S, Ke R, Zha J et al (2008) Influence of Humic Acid on Bioavailability and Toxicity of Benzo[k]fluoranthene to Japanese Medaka. Environ Sci Technol 42:9431–9436. doi:10.1021/es8014502

    Article  CAS  Google Scholar 

  40. Droge STJ, Hermens JLM (2007) Nonlinear sorption of three alcohol ethoxylates to marine sediment: a combined Langmuir and linear sorption process. Environ Sci Technol 41:3192–3198. doi:10.1021/es062608z

    Article  CAS  Google Scholar 

  41. Droge STJ, Sinnige TL, Hermens JLM (2007) Analysis of freely dissolved alcohol ethoxylate homologues in various seawater matrixes using solid-phase microextraction. Anal Chem 79:2885–2891. doi:10.1021/ac0620260

    Article  CAS  Google Scholar 

  42. Chen Y, Droge STJ, Hermens JLM (2012) Analyzing freely dissolved concentrations of cationic surfactant utilizing ion-exchange capability of polyacrylate coated solid-phase microextraction fibers. J Chromatogr A 1252:15–22. doi:10.1016/j.chroma.2012.06.080

    Article  CAS  Google Scholar 

  43. Haftka JJ, Scherpenisse P, Jonker MTO, Hermens JLM (2013) Using polyacrylate-coated SPME fibers to quantify sorption of polar and ionic organic contaminants to dissolved organic carbon. Environ Sci Technol 47:4455–4462. doi:10.1021/es400236a

    Article  CAS  Google Scholar 

  44. Wang F, Chen Y, Hermens JLM, Droge STJ (2013) Evaluation of passive samplers with neutral or ion-exchange polymer coatings to determine freely dissolved concentrations of the basic surfactant lauryl diethanolamine: measurements of acid dissociation constant and organic carbon-water sorption coefficie. J Chromatogr A 1315:8–14. doi:10.1016/j.chroma.2013.09.041

    Article  CAS  Google Scholar 

  45. Vaes WH, Ramos EU, Hamwijk C et al (1997) Solid phase microextraction as a tool to determine membrane/water partition coefficients and bioavailable concentrations in in vitro systems. Chem Res Toxicol 10:1067–1072. doi:10.1021/tx970109t

    Article  CAS  Google Scholar 

  46. Pörschmann J, Kopinke F-D, Pawliszyn J (1998) Solid-phase microextraction for determining the binding state of organic pollutants in contaminated water rich in humic organic matter. J Chromatogr A 816:159–167. doi:10.1016/S0021-9673(98)00525-1

    Article  Google Scholar 

  47. Heringa MB, Hogevonder C, Busser F, Hermens JLM (2006) Measurement of the free concentration of octylphenol in biological samples with negligible depletion-solid phase microextraction (nd-SPME): analysis of matrix effects. J Chromatogr B Anal Technol Biomed Life Sci 834:35–41. doi:10.1016/j.jchromb.2006.02.009

    Article  CAS  Google Scholar 

  48. Oomen AG, Mayer P, Tolls J (2000) Nonequilibrium solid-phase microextraction for determination of the freely dissolved concentration of hydrophobic organic compounds: matrix effects and limitations. Anal Chem 72:2802–2808

    Article  CAS  Google Scholar 

  49. Caupos E, Touffet A, Mazellier P, Croue JP (2015) Partitioning of the pesticide trifluralin between dissolved organic matter and water using automated SPME-GC/MS. Environ Sci Pollut Res 22:4201–4212. doi:10.1007/s11356-014-3614-0

    Article  CAS  Google Scholar 

  50. Ohlenbusch G, Kumke MU, Frimmel FH (2000) Sorption of phenols to dissolved organic matter investigated by solid phase microextraction. Sci Total Environ 253:63–74. doi:10.1016/S0048-9697(00)00376-4

    Article  CAS  Google Scholar 

  51. Jiang R, Xu J, Lin W et al (2015) Investigation of the kinetic process of solid phase microextraction in complex matrix. Anal Chim Acta 900:111–116. doi:10.1016/j.aca.2015.09.010

    Article  CAS  Google Scholar 

  52. Jiang R, Xu J, Zhu F et al (2015) Study of complex matrix effect on solid phase microextraction for biological sample analysis. J Chromatogr A 1411:34–40. doi:10.1016/j.chroma.2015.07.118

    Article  CAS  Google Scholar 

  53. Ripszam M, Haglund P (2015) Automated method for determination of dissolved organic carbon-water distribution constants of structurally diverse pollutants using pre-equilibrium solid-phase microextraction. Environ Toxicol Chem 34:266–274. doi:10.1002/etc.2805

    Article  CAS  Google Scholar 

  54. Endo S, Mewburn B, Escher BI (2013) Liposome and protein-water partitioning of polybrominated diphenyl ethers (PBDEs). Chemosphere 90:505–511. doi:10.1016/j.chemosphere.2012.07.069

    Article  CAS  Google Scholar 

  55. Parry E, Young TM (2013) Distribution of pyrethroid insecticides in secondary wastewater effluent. Environ Toxicol Chem 32:2686–2694. doi:10.1002/etc.2347

    Article  CAS  Google Scholar 

  56. Haftka JJH, Govers HAJ, Parsons JR (2010) Influence of temperature and origin of dissolved organic matter on the partitioning behavior of polycyclic aromatic hydrocarbons. Environ Sci Pollut Res Int 17:1070–1079. doi:10.1007/s11356-009-0263-9

    Article  CAS  Google Scholar 

  57. Kramer NI, van Eijkeren JCH, Hermens JLM (2007) Influence of albumin on sorption kinetics in solid-phase microextraction: consequences for chemical analyses and uptake processes. Anal Chem 79:6941–6948. doi:10.1021/ac070574n

    Article  CAS  Google Scholar 

  58. Ter Laak TL, Durjava M, Struijs J, Hermens JLM (2005) Solid phase dosing and sampling technique to determine partition coefficients of hydrophobic chemicals in complex matrixes. Environ Sci Technol 39:3736–3742. doi:10.1021/es048406p

    Article  Google Scholar 

  59. Hawthorne SB, Grabanski CB, Miller DJ, Kreitinger JP (2005) Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of K(DOC) values. Environ Sci Technol 39:2795–2803

    Article  CAS  Google Scholar 

  60. Lee S, Gan J, Liu WP, Anderson MA (2003) Evaluation of K d Underestimation Using Solid Phase Microextraction. Environ Sci Technol 37:5597–5602

    Article  CAS  Google Scholar 

  61. Leslie HAHA, Oosthoek AJPAJP, Busser FJM et al (2002) Biomimetic solid-phase microextraction to predict body residues and toxicity of chemicals that act by narcosis. Environ Toxicol Chem 21:229–234. doi:10.1897/1551-5028(2002)021<0229:BSPMTP>2.0.CO;2

  62. Kopinke F-DD, Georgi A, Mackenzie K (2001) Sorption and chemical reactions of PAHs with dissolved humic substances and related model polymers. Acta Hydrochim Hydrobiol 28:385–399

    Article  Google Scholar 

  63. Mayer P, Vaes WHJ, Wijnker F et al (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183. doi:10.1021/es001179g

    Article  CAS  Google Scholar 

  64. Birch H, Gouliarmou V, Lützhøft H-CH et al (2010) Passive dosing to determine the speciation of hydrophobic organic chemicals in aqueous samples. Anal Chem 82:1142–1146. doi:10.1021/ac902378w

    Article  CAS  Google Scholar 

  65. Gouliarmou V, Smith KEC, de Jonge LW, Mayer P (2012) Measuring binding and speciation of hydrophobic organic chemicals at controlled freely dissolved concentrations and without phase separation. Anal Chem 84:1601–1608. doi:10.1021/ac2028497

    Article  CAS  Google Scholar 

  66. Benhabib K, Town R, van Leeuwen H (2009) Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME). Langmuir 25:3381–3386

    Article  CAS  Google Scholar 

  67. Luers F, ter Hulscher TEM (1996) Temperature effect on the partitioning of polycyclic aromatic hydrocarbons between natural organic carbon and water. Chemsphere 33:643–657

    Article  CAS  Google Scholar 

  68. Verhaar HJM, Busser FJM, Hermens JLM (1995) Surrogate parameter for the base-line toxicity content of contaminated water—simulating the bioconcentration of mixtures of pollutants and counting molecules. Environ Sci Technol 29:726–734. doi:10.1021/es00003a021

    Article  CAS  Google Scholar 

  69. Parkerton TF, Stone MA (1995) Ecotoxicity on a stick: A novel analytical tool for predicting the ecotoxicity of petroleum contaminated samples. In: 17 annu. meet. soc. environ. toxicol. chem. Society of Environmental Toxicology and Chemistry, Pensacola, FL (United States), p 378

    Google Scholar 

  70. Mayer P, Vaes WHJ, Wijnker F et al (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183. doi:10.1021/es001179g

    Article  CAS  Google Scholar 

  71. Heringa MB, Hermens JLM (2003) Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME). TrAC Trends Anal Chem 22:575–587. doi:10.1016/S0165-9936(03)01006-9

    Article  CAS  Google Scholar 

  72. Ter Laak TL, Durjava M, Struijs J, Hermens JLM (2005) Solid phase dosing and sampling technique to determine partition coefficients of hydrophobic chemicals in complex matrixes. Environ Sci Technol 39:3736–3742. doi:10.1021/es048406p

    Article  Google Scholar 

  73. Mayer P, Karlson U, Christensen PS et al (2005) Quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through unstirred boundary layers. Environ Sci Technol 39:6123–6129

    Article  CAS  Google Scholar 

  74. Ter Laak TL, Busser FJM, Hermens JLM (2008) Poly(dimethylsiloxane) as passive sampler material for hydrophobic chemicals: effect of chemical properties and sampler characteristics on partitioning and equilibration times. Anal Chem 80:3859–3866. doi:10.1021/ac800258j

    Article  Google Scholar 

  75. Jiang R, Lin W, Wen S et al (2015) Development of a full automation solid phase microextraction method for investigating the partition coefficient of organic pollutant in complex sample. J Chromatogr A 1406:27–33. doi:10.1016/j.chroma.2015.06.018

    Article  CAS  Google Scholar 

  76. Mäenpää K, Leppänen MT, Reichenberg F et al (2011) Equilibrium sampling of persistent and bioaccumulative compounds in soil and sediment: Comparison of two approaches to determine equilibrium partitioning concentrations in lipids. Environ Sci Technol 45:1041–1047. doi:10.1021/es1029969

    Article  Google Scholar 

  77. Kopinke FD, Porschmann J, Remmler M (1995) Sorption behavior of anthropogenic humic matter. Naturwissenschaften 82:28–30

    Article  CAS  Google Scholar 

  78. Kopinke F-D, Pörschmann J, Georgi A (1999) Application of SPME to study sorption phenomena on dissolved humic organic matter. In: Applications of solid phase microextraction. The royal society of chemistry

    Google Scholar 

  79. Poon KF, Lam PKS, Lam MHW (1999) Determination of polynuclear aromatic hydrocarbons in human blood serum by proteolytic digestion - Direct immersion SPME. Anal Chim Acta 396:303–308. doi:10.1016/S0003-2670(99)00447-X

    Article  CAS  Google Scholar 

  80. Poon KF, Lam PKS, Lam MHW (1999) Determination of polychlorinated biphenyls in human blood serum by SPME. Chemosphere 39:905–912. doi:10.1016/S0045-6535(99)00033-8

    Article  CAS  Google Scholar 

  81. Zielińska K, Van Leeuwen HP, Thibault S, Town RM (2012) Speciation analysis of aqueous nanoparticulate diclofenac complexes by solid-phase microextraction. Langmuir 28:14672–14680. doi:10.1021/la303143w

    Article  Google Scholar 

  82. Zielińska K, van Leeuwen HP (2013) Role of nanoparticles in analytical solid phase microextraction (SPME). Environ Chem 10:120. doi:10.1071/EN13004

    Article  Google Scholar 

  83. Xu J, Huang S, Wu R et al (2015) Bioinspired polydopamine sheathed nanofibers for high-efficient in vivo solid-phase microextraction of pharmaceuticals in fish muscle. Anal Chem 87:3453–3459. doi:10.1021/ac5048357

    Article  CAS  Google Scholar 

  84. Alam MN, Ricardez-Sandoval L, Pawliszyn J (2015) Numerical modeling of solid-phase microextraction: binding matrix effect on equilibrium time. Anal Chem 87:9846–9854. doi:10.1021/acs.analchem.5b02239

    Article  CAS  Google Scholar 

  85. Jeannot M, Cantwell F (1997) Solvent microextraction as a speciation tool: determination of free progesterone in a protein solution. Anal Chem 69:2935–2940

    Article  CAS  Google Scholar 

  86. Leeuwenl HVAN, Cleven R, Buffle J (1989) Voltammetric techniques for complexation measurements in natural aquatic media. Role of the size of macromolecular liginds and dissociation kinetic of complexes. Int Union Pure Appl Chem 61:255–274

    Google Scholar 

  87. Ter Laak TL, Van Eijkeren JCH, Busser FJM et al (2009) Facilitated transport of polychlorinated biphenyls and polybrominated diphenyl ethers by dissolved organic matter. Environ Sci Technol 43:1379–1385. doi:10.1021/es802403v

    Article  Google Scholar 

  88. Xu J, Huang S, Jiang R et al (2016) Evaluation of the availability of bound analyte for passive sampling in the presence of mobile binding matrix. Anal Chim Acta 917:19–26. doi:10.1016/j.aca.2016.02.039

    Article  CAS  Google Scholar 

  89. Smith KEC, Thullner M, Wick LY, Harms H (2011) Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase. Environ Sci Technol 45:8741–8747. doi:10.1021/es202983k

    Article  CAS  Google Scholar 

  90. Ramus K, Kopinke FD, Georgi A (2012) Sorption-induced effects of humic substances on mass transfer of organic pollutants through aqueous diffusion boundary layers: the example of water/air exchange. Environ Sci Technol 46:2196–2203. doi:10.1021/es2038382

    Article  CAS  Google Scholar 

  91. Van Eijkeren JCH, Heringa MB, Hermens JLM (2004) Modelling SPME data from kinetic measurements in complex samples. Analyst 129:1137–1142. doi:10.1039/b407926d

    Article  Google Scholar 

  92. Zhang X, Oakes KD, Hoque E et al (2011) Pre-equilibrium solid-phase microextraction of free analyte in complex samples: correction for mass transfer variation from protein binding and matrix tortuosity. Anal Chem 83:3365–3370

    Article  CAS  Google Scholar 

  93. Ter Laak TL, ter Bekke MA, Hermens JLM (2009) Dissolved organic matter enhances transport of PAHs to aquatic organisms. Environ Sci Technol 43:7212–7217. doi:10.1021/es903149f

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge financial support from the project of National Natural Science Foundation of China (Grant No. 21407184) and the NSF of Guangdong Province (Grant S2013030013474).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangfeng Ouyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Jiang, R., Xu, J., Ouyang, G. (2017). Solid Phase Microextraction for Sensing Freely Dissolved Analytes in Complex Water Sample. In: Ouyang, G., Jiang, R. (eds) Solid Phase Microextraction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53598-1_4

Download citation

Publish with us

Policies and ethics