Skip to main content

Nephronophthisis and Autosomal Dominant Interstitial Kidney Disease (ADIKD)

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

Nephronophthisis comprises a clinically and genetically heterogenous group of autosomal recessive inherited tubulointerstitial cystic disorders. It represents the most frequent genetic cause of end-stage renal disease in children and young adults. Up to date mutations in 18 different genes (NPHP1-18) have been identified. Almost all gene products localize either to primary cilia or the ciliary base which leads to the classification of nephronophthisis as a ciliopathy. Nephronophthisis is often accompanied by anomalies in other organs. Several well described complex clinical syndromes can feature the renal picture of nephronophthisis, including Senior-Løken syndrome, Joubert syndrome, COACH syndrome, Jeune syndrome, Meckel-Gruber syndromea and others. Autosomal dominant interstitial kidney disease (ADIKD) is a rare genetic disorder characterized by a slowly progressive tubulo-interstitial nephropathy leading to end-stage renal disease in late adulthood. Although there is major clinical and histological overlap with nephronophthisis, autosomal dominant inheritance as well as progressive renal failure later in life are two main differences. So far three genes could be identified in which mutations lead to ADIKD: (1) UMOD, (2) REN and (3) MUC1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fanconi G, Hanhart E, von Albertini A, Uhlinger E, Dolivo G, Prader A. Die familiäre juvenile nephronophthise. Helv Paediatr Acta. 1951;6:1–49.

    CAS  PubMed  Google Scholar 

  2. Smith C, Graham J. Congenital medullary cysts of kidneys with severe refractory anemia. Am J Dis Child. 1945;69:369–77.

    Google Scholar 

  3. Waldherr R, Lennert T, Weber HP, Fodisch HJ, Scharer K. The nephronophthisis complex. A clinicopathologic study in children. Virchows Arch [Pathol Anat]. 1982;394:235–54.

    Article  CAS  Google Scholar 

  4. Zollinger HU, Mihatsch MJ, Edefonti A, Gaboardi F, Imbasciati E, Lennert T. Nephronophthisis (medullary cystic disease of the kidney). A study using electron microscopy, immunofluorescence, and a review of the morphological findings. Helv Paediatr Acta. 1980;35:509–30.

    CAS  PubMed  Google Scholar 

  5. Blowey DL, Querfeld U, Geary D, Warady BA, Alon U. Ultrasound findings in juvenile nephronophthisis. Pediatr Nephrol. 1996;10:22–4.

    Article  CAS  PubMed  Google Scholar 

  6. Hildebrandt F, Strahm B, Nothwang HG, Gretz N, Schnieders B, Singh-Sawhney I, Kutt R, Vollmer M, Brandis M. Molecular genetic identification of families with juvenile nephronophthisis type 1: rate of progression to renal failure. APN Study Group. Arbeitsgemeinschaft fuer Paediatrische Nephrologie. Kidney Int. 1997;51:261–9.

    Article  CAS  PubMed  Google Scholar 

  7. Otto EA, Schermer B, Obara T, O’Toole JF, Hiller KS, Mueller AM, Ruf RG, Hoefele J, Beekmann F, Landau D, Foreman JW, Goodship JA, Strachan T, Kispert A, Wolf MT, Gagnadoux MF, Nivet H, Antignac C, Walz G, Drummond IA, Benzing T, Hildebrandt F. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet. 2003;34:413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haider NB, Carmi R, Shalev H, Sheffield VC, Landau D. A Bedouin kindred with infantile nephronophthisis demonstrates linkage to chromosome 9 by homozygosity mapping. Am J Hum Genet. 1998;63:1404–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bodaghi E, Honarmand MT, Ahmadi M. Infantile nephronophthisis. Int J Pediatr Nephrol. 1987;8:207–10.

    CAS  PubMed  Google Scholar 

  10. Gagnadoux MF, Bacri JL, Broyer M, Habib R. Infantile chronic tubulo-interstitial nephritis with cortical microcysts: variant of nephronophthisis or new disease entity ? Pediatr Nephrol. 1989;3:50–5.

    Article  CAS  PubMed  Google Scholar 

  11. O’Toole JF, Otto EA, Frishberg Y, Hildebrandt F. Retinitis pigmentosa and renal failure in a patient with mutations in INVS. Nephrol Dial Transplant. 2006;21:1989–91.

    Article  PubMed  Google Scholar 

  12. Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Kronig C, Schermer B, Benzing T, Cabello OA, Jenny A, Mlodzik M, Polok B, Driever W, Obara T, Walz G. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet. 2005;37:537–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Antignac C, Arduy CH, Beckmann JS, Benessy F, Gros F, Medhioub M, Hildebrandt F, Dufier JL, Kleinknecht C, Broyer M, Weissenbach J, Habib R, Cohen D. A gene for familial juvenile nephronophthisis (recessive medullary cystic kidney disease) maps to chromosome 2p. Nat Genet. 1993;3:342–5.

    Article  CAS  PubMed  Google Scholar 

  14. Hildebrandt F, Singh-Sawhney I, Schnieders B, Centofante L, Omran H, Pohlmann A, Schmaltz C, Wedekind H, Schubotz C, Antignac C. Mapping of a gene for familial juvenile nephronophthisis: refining the map and defining flanking markers on chromosome 2. APN Study Group. Am J Hum Genet. 1993;53:1256–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hildebrandt F, Otto E, Rensing C, Nothwang HG, Vollmer M, Adolphs J, Hanusch H, Brandis M. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat Genet. 1997;17:149–53.

    Article  CAS  PubMed  Google Scholar 

  16. Saunier S, Calado J, Heilig R, Silbermann F, Benessy F, Morin G, Konrad M, Broyer M, Gubler MC, Weissenbach J, Antignac C. A novel gene that encodes a protein with a putative src homology 3 domain is a candidate gene for familial juvenile nephronophthisis. Hum Mol Genet. 1997;6:2317–23.

    Article  CAS  PubMed  Google Scholar 

  17. Hildebrandt F, Rensing C, Betz R, Sommer U, Birnbaum S, Imm A, Omran H, Leipoldt M, Otto E. Arbeitsgemeinschaft fuer Paediatrische Nephrologie (APN) Study Group: establishing an algorithm for molecular genetic diagnostics in 127 families with juvenile nephronophthisis. Kidney Int. 2001;59(2):434–45.

    Article  CAS  PubMed  Google Scholar 

  18. Hoefele J, Sudbrak R, Reinhardt R, Lehrack S, Hennig S, Imm A, Muerb U, Utsch B, Attanasio M, O’Toole JF, Otto E, Hildebrandt F. Mutational analysis of the NPHP4 gene in 250 patients with nephronophthisis. Hum Mutat. 2005;25(4):411.

    Article  PubMed  Google Scholar 

  19. Konrad M, Saunier S, Heidet L, Silbermann F, Benessy F, Calado J, Le Paslier D, Broyer M, Gubler MC, Antignac C. Large homozygous deletions of the 2q13 region are a major cause of juvenile nephronophthisis. Hum Mol Genet. 1996;5:367–71.

    Article  CAS  PubMed  Google Scholar 

  20. Donaldson JC, Dempsey PJ, Reddy S, Bouton AH, Coffey RJ, Hanks SK. Crk-associated substrate p130(Cas) interacts with nephrocystin and both proteins localize to cell-cell contacts of polarized epithelial cells. Exp Cell Res. 2000;256:168–78.

    Article  CAS  PubMed  Google Scholar 

  21. Benzing T, Gerke P, Hopker K, Hildebrandt F, Kim E, Walz G. Nephrocystin interacts with Pyk2, p130(Cas), and tensin and triggers phosphorylation of Pyk2. Proc Natl Acad Sci U S A. 2001;98(17):9784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mollet G, Salomon R, Gribouval O, Silbermann F, Bacq D, Landthaler G, Milford D, Nayir A, Rizzoni G, Antignac C, Saunier S. The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nat Genet. 2002;32:300–5.

    Article  CAS  PubMed  Google Scholar 

  23. Olbrich H, Fliegauf M, Hoefele J, Kispert A, Otto E, Volz A, Wolf MT, Sasmaz G, Trauer U, Reinhardt R, Sudbrak R, Antignac C, Gretz N, Walz G, Schermer B, Benzing T, Hildebrandt F, Omran H. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet. 2003;34:455–9.

    Article  CAS  Google Scholar 

  24. Mollet G, Silbermann F, Delous M, Salomon R, Antignac C, Saunier S. Characterization of the nephrocystin/nephrocystin-4 complex and subcellular localization of nephrocystin-4 to primary cilia and centrosomes. Hum Mol Genet. 2005;14:645–56.

    Article  CAS  PubMed  Google Scholar 

  25. Schermer B, Hopker K, Omran H, Ghenoiu C, Fliegauf M, Fekete A, Horvath J, Kottgen M, Hackl M, Zschiedrich S, Huber TB, Kramer-Zucker A, Zentgraf H, Blaukat A, Walz G, Benzing T. Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia. EMBO J. 2005;24:4415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fliegauf M, Horvath J, von Schnakenburg C, Müller D, Thumfart J, Schermer B, Pazour GJ, Neumann HPH, Zentgraf H, Benzing T, Omran H. Nephrocystin specifically localizes to the transition zone of renal and respiratory cilia and is absent in nephronophthisis patients with NPHP1 deletions. J Am Soc Nephrol. 2006;17:2424–33.

    Article  CAS  PubMed  Google Scholar 

  27. Bollee G, Fakhouri F, Karras A, Noel LH, Salomon R, Servais A, Lesavre P, Moriniere V, Antignac C, Hummel A. Nephronophthisis related to homozygous NPHP1 gene deletion as a cause of chronic renal failure in adults. Nephrol Dial Transplant. 2006;21(9):2660–3.

    Article  PubMed  Google Scholar 

  28. Betz R, Rensing C, Otto E, Mincheva A, Zehnder D, Lichter P, Hildebrandt F. Children with ocular motor apraxia type Cogan carry deletions in the gene (NPHP1) for juvenile nephronophthisis. J Pediatr. 2000;136:828–31.

    CAS  PubMed  Google Scholar 

  29. Parisi MA, Bennett CL, Eckert ML, Dobyns WB, Gleeson JG, Shaw DWW, McDonald R, Eddy A, Chance PF, Glass IA. The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. Am J Hum Genet. 2004;75:82–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Otto E, Hoefele J, Ruf R, Mueller AM, Hiller KS, Wolf MT, Schuermann MJ, Becker A, Birkenhager R, Sudbrak R, Hennies HC, Nurnberg P, Hildebrandt F. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am J Hum Genet. 2002;71:1161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Omran H, Fernandez C, Jung M, Häffner K, Fargier B, Waldherr R, Gretz N, Brandis M, Rüschendorf F, Reis A, Hildebrandt F. Identification of a new gene locus for adolescent nephronophthisis, on chromosome 3q22 in a large Venzuelan pedigree. Am J Hum Genet. 2000;66:118–27.

    Article  CAS  PubMed  Google Scholar 

  32. Omran H, Häffner K, Burth S, Fernandez C, Fargier B, Villaquiran A, Nothwang HG, Schnittger S, Lehrach H, Woo D, Brandis M, Sudbrak R, Hildebrandt F. Human adolescent nephronophthisis: gene locus synteny with polycystic kidney disease in pcy mice. J Am Soc Nephrol. 2001;12:107–13.

    CAS  PubMed  Google Scholar 

  33. Omran H, Sasmaz G, Häffner K, Volz A, Olbrich H, Otto E, Wienker TF, Korinthenberg R, Brandis M, Antignac C, Hildebrandt F. Identification of a gene locus for Senior-Løken syndrome in the region of the nephronophthisis type 3 gene. J Am Soc Nephrol. 2002;13:75–9.

    CAS  PubMed  Google Scholar 

  34. Hildebrandt F, Omran H. New insights: nephronophthisis-medullary cystic kidney disease. Pediatr Nephrol. 2001;16:168–76.

    Article  CAS  PubMed  Google Scholar 

  35. Løken AC, Hanssen O, Halvorsen S, Jølster NJ. Hereditary renal dysplasia and blindness. Acta Paediatr. 1961;50:177–84.

    Article  PubMed  Google Scholar 

  36. Senior B, Friedmann AI, Braudo JL. Juvenile familial nephropathy with tapetoretinal degeneration: a new oculo-renal dystrophy. Am J Opthalmol. 1961;52:625–33.

    Article  CAS  Google Scholar 

  37. Leber T. Über Retinitis pigmentosa und angeborene Amaurose. Albrecht von Graefe’s Arch Klin Exp Ophthalmol. 1869;15:1–25.

    Article  Google Scholar 

  38. Leber T. Über anormale Formen der Retinitis pigmentosa. Arch Ophthalmol. 1871;17:314–41.

    Google Scholar 

  39. François J. Leber’s congenital tapeto-retinal degeneration. Int Ophthalmol Clin. 1968;8:929–47.

    Article  PubMed  Google Scholar 

  40. Franceschetti A, Dieterle P. L’importance diagnostique de l’éléctrorétinogramme dans le dégénérescences tapéto-rétinennes avec rétrécissement du champ visuel et héméralopie. Conf Neurol. 1954;14:184–6.

    Article  CAS  Google Scholar 

  41. Sattar S, Gleeson JG. The ciliopathies in neuronal development: a clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. Dev Med Child Neurol. 2011;53(9):793–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Otto EA, Loeys B, Khanna H, Hellemans J, Sudbrak R, Fan S, Muerb U, O’Toole JF, Helou J, Attanasio M, Utsch B, Sayer JA, Lillo C, Jimeno D, Coucke P, De Paepe A, Reinhardt R, Klages S, Tsuda M, Kawakami I, Kusakabe T, Omran H, Imm A, Tippens M, Raymond PA, Hill J, Beales P, He S, Kispert A, Margolis B, Williams DS, Swaroop A, Hildebrandt F. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Løken syndrome and interacts with RPGR and calmodulin. Nat Genet. 2005;37:282–8.

    Article  CAS  PubMed  Google Scholar 

  43. Maria BL, Quisling RG, Rosainz LC, Yachnis AT, Gitten JC, Dede DE, Fennell E. Molar tooth sign in Joubert syndrome: clinical, radiologic, and pathologic significance. J Child Neurol. 1999;14:368–76.

    Article  CAS  PubMed  Google Scholar 

  44. Utsch B, Sayer JA, Attanasio M, Pereira RR, Eccles M, Hennies HC, Otto EA, Hildebrandt F. Identification of the first AHI1 gene mutations in nephronophthisis-associated Joubert syndrome. Pediatr Nephrol. 2006;21:32–5.

    Article  PubMed  Google Scholar 

  45. Parisi MA, Doherty D, Eckert ML, Shaw DW, Ozyurek H, Aysun S, Giray O, Al Swaid A, Al Shahwan S, Dohayan N, Bakhsh E, Indridason OS, Dobyns WB, Bennett CL, Chance PF, Glass IA. AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J Med Genet. 2006;43:334–9.

    Article  CAS  PubMed  Google Scholar 

  46. Sayer JA, Otto EA, O’Toole JF, Nurnberg G, Kennedy MA, Becker C, Hennies HC, Helou J, Attanasio M, Fausett BV, Utsch B, Khanna H, Liu Y, Drummond I, Kawakami I, Kusakabe T, Tsuda M, Ma L, Lee H, Larson RG, Allen SJ, Wilkinson CJ, Nigg EA, Shou C, Lillo C, Williams DS, Hoppe B, Kemper MJ, Neuhaus T, Parisi MA, Glass IA, Petry M, Kispert A, Gloy J, Ganner A, Walz G, Zhu X, Goldman D, Nurnberg P, Swaroop A, Leroux MR, Hildebrandt F. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet. 2006;38:674–81.

    Article  CAS  PubMed  Google Scholar 

  47. Valente EM, Silhavy JL, Brancati F, Barrano G, Krishnaswami SR, Castori M, Lancaster MA, Boltshauser E, Boccone L, Al-Gazali L, Fazzi E, Signorini S, Louie CM, Bellacchio E, International Joubert Syndrome Related Disorders Study Group, Bertini E, Dallapiccola B, Gleeson JG. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet. 2006;38:623–5.

    Article  CAS  PubMed  Google Scholar 

  48. Bergmann C. Educational paper: ciliopathies. Eur J Pediatr. 2012;171(9):1285–300.

    Article  PubMed  Google Scholar 

  49. Doherty D, Parisi MA, Finn LS, Gunay-Aygun M, Al-Mateen M, Bates D, Clericuzio C, Demir H, Dorschner M, van Essen AJ, Gahl WA, Gentile M, Gorden NT, Hikida A, Knutzen D, Ozyurek H, Phelps I, Rosenthal P, Verloes A, Weigand H, Chance PF, Dobyns WB, Glass IA. Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J Med Genet. 2010;47(1):8–21.

    Article  CAS  PubMed  Google Scholar 

  50. Alexiev BA, Lin X, Sun CC, Brenner DS. Meckel-Gruber syndrome: pathologic manifestations, minimal diagnostic criteria, and differential diagnosis. Arch Pathol Lab Med. 2006;130(8):1236–8.

    PubMed  Google Scholar 

  51. Cogan DG. Heredity of congenital ocular motor apraxia. Trans Am Acad Ophthal Otolaryngol. 1972;76:60–3.

    CAS  Google Scholar 

  52. Hedera P, Gorski JL. Retinitis pigmentosa, growth hormone deficiency, and acromelic skeletal dysplasia in two brothers: possible familial RHYNS syndrome. Am J Med Genet. 2001;101:142–5.

    Article  CAS  PubMed  Google Scholar 

  53. Mainzer F, Saldino RM, Ozonoff MB, Minagi H. Familial nephropathy associated with retinitis pigmentosa, cerebellar ataxia and skeletal abnormalities. Am J Med. 1970;49:556–62.

    Article  CAS  PubMed  Google Scholar 

  54. Giedion A. Phalangeal cone shaped epiphysis of the hands (PhCSEH) and chronic renal disease: the conorenal syndromes. Pediatr Radiol. 1979;8:32–8.

    Article  CAS  PubMed  Google Scholar 

  55. Popovic-Rolovic M, Calic-Perisic N, Bunjevacki G, Negovanovic D. Juvenile nephronophthisis associated with retinal pigmentary dystrophy, cerebellar ataxia, and skeletal abnormalities. Arch Dis Child. 1976;51:801–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Robins DG, French TA, Chakera TM. Juvenile nephronophthisis associated with skeletal abnormalities and hepatic fibrosis. Arch Dis Child. 1976;51:799–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boichis H, Passwell J, David R, Miller H. Congenital hepatic fibrosis and nephronophthisis: a family study. Q J Med. 1973;42:221–33.

    CAS  PubMed  Google Scholar 

  58. Proesmans W, Van Damme B, Macken J. Nephronophthisis and tapetoretinal degeneration associated with liver fibrosis. Clin Nephrol. 1975;3:160–4.

    CAS  PubMed  Google Scholar 

  59. Delaney V, Mullaney J, Bourke E. Juvenile nephronophthisis, congenital hepatic fibrosis and retinal hypoplasia in twins. Q J Med. 1978;186:281–96. 66:558–63.

    Google Scholar 

  60. Bernstein J. Glomerulocystic kidney disease – nosological considerations. Pediatr Nephrol. 1993;7:464–70.

    Article  CAS  PubMed  Google Scholar 

  61. Bissler J, Siroky BJ, Yin H. Glomerulocystic kidney disease. Pediatr Nephrol. 2010;25:2049–59.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bergmann C, Fliegauf M, Brüchle NO, Frank V, Olbrich H, Kirschner J, Schermer B, Schmedding I, Kispert A, Kränzlin B, Nürnberg G, Becker C, Grimm T, Girschick G, Lynch SA, Kelehan P, Senderek J, Neuhaus TJ, Stallmach T, Zentgraf H, Nürnberg P, Gretz N, Lo C, Lienkamp S, Schäfer T, Walz G, Benzing T, Zerres K, Omran H. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like-syndrome, situs inversus and renal-hepatic-pancreatic dysplasia. Am J Hum Genet. 2008;82:959–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kang HS, Beak JY, Kim YS, Herbert R, Jetten AM. Glis 3 is associated with primary cilia and Wwtr1/TAZ and implicated in polycystic kidney disease. Mol Cell Biol. 2009;29:2556–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Piontek K, Menezes LF, Garcia-Gonzalez MA, Huso DL, Germino GG. A critical developmental switch defines the kinetics of kidney cyst formation after loss of pkd1. Nat Med. 2007;13:1490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Badano JL, Teslovich TM, Katsanis N. The centrosome in human genetic disease. Nat Rev Genet. 2005;6:194–205.

    Article  CAS  PubMed  Google Scholar 

  66. Hildebrandt F, Otto E. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease ? Nat Rev Genet. 2005;6:928–4.

    Article  CAS  PubMed  Google Scholar 

  67. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33:129–37.

    Article  CAS  PubMed  Google Scholar 

  68. Watnick T, Germino G. From cilia to cyst. Nat Genet. 2003;34:355–6.

    Article  CAS  PubMed  Google Scholar 

  69. Kim S, Dynlacht BD. Assembling a primary cilium. Curr Opin Cell Biol. 2013;25(4):506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Omran H. NPHP proteins: gatekeepers of the ciliary compartment. J Cell Biol. 2010;190(5):715–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hamiwka LA, Midgley JP, Wade AW, Martz KL, Grisaru S. Outcomes of kidney transplantation in children with nephronophthisis: an analysis of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) Registry. Pediatr Transplant. 2008;12:878–82.

    Article  PubMed  Google Scholar 

  72. Gardner KD. Cystic diseases of the kidney: a perspective on medullary cystic disease. Birth Defects Orig Artic Ser. 1974;10:29–31.

    CAS  PubMed  Google Scholar 

  73. Goldman SH, Walker SR, Merigan TCJ, Gardner KDJ, Bull JM. Hereditary occurrence of cystic disease of the renal medulla. N Engl J Med. 1966;274:984–92.

    Article  CAS  PubMed  Google Scholar 

  74. Strauss MB, Sommers SC. Medullary cystic disease and familial juvenile nephronophthisis. N Engl J Med. 1967;277:863–4.

    Article  CAS  PubMed  Google Scholar 

  75. Stavrou C, Koptides M, Tombazos C, Psara E, Patsias C, Zouvani I, Kyriacou K, Hildebrandt F, Christofides T, Pierides A, Deltas CC. Autosomal-dominant medullary cystic kidney disease type 1: clinical and molecular findings in six large Cypriot families. Kidney Int. 2002;62:1385–94.

    Article  PubMed  Google Scholar 

  76. Scolari F, Puzzer D, Amoroso A, Caridi G, Ghiggeri GM, Maiorca R, Aridon P, De Fusco M, Ballabio A, Casari G. Identification of a new locus for medullary cystic disease, on chromosome 16p12. Am J Hum Genet. 1999;64:1655–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kamatani N, Moritani M, Yamanaka H, Takeuchi F, Hosoya T, Itakura M. Localization of a gene for familial juvenile hyperuricemic nephropathy causing underexcretion-type gout to 16p12 by genome-wide linkage analysis of a large family. Arthritis Rheum. 2000;43:925–9.

    Article  CAS  PubMed  Google Scholar 

  78. Kirby A, Gnirke A, Jaffe DB, Barešová V, Pochet N, Blumenstiel B, Ye C, Aird D, Stevens C, Robinson JT, Cabili MN, Gat-Viks I, Kelliher E, Daza R, DeFelice M, Hůlková H, Sovová J, Vylet’al P, Antignac C, Guttman M, Handsaker RE, Perrin D, Steelman S, Sigurdsson S, Scheinman SJ, Sougnez C, Cibulskis K, Parkin M, Green T, Rossin E, Zody MC, Xavier RJ, Pollak MR, Alper SL, Lindblad-Toh K, Gabriel S, Hart PS, Regev A, Nusbaum C, Kmoch S, Bleyer AJ, Lander ES, Daly MJ. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat Genet. 2013;45:299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wolf MT, Mucha BE, Attanasio M, Zalewski I, Karle SM, Neumann HP, Rahman N, Bader B, Baldamus CA, Otto E, Witzgall R, Fuchshuber A, Hildebrandt F. Mutations of the Uromodulin gene in MCKD type 2 patients cluster in exon 4, which encodes three EGF-like domains. Kidney Int. 2003;64:1580–7.

    Article  CAS  PubMed  Google Scholar 

  80. Mutig K, Kahl T, Saritas T, Godes M,Persson P, Bates J, Raffi H, Rampoldi L, Uchida S, Hille S, Dosche C, Kumar S, Castaneda-Bueno M, Gamba G, Bachmann S. Na + K + 2Cl-Cotransporter (NKCC2) is regulated by Tamm-Horsfall-Protein (THP). American Society of Nephrology Annual Meeting, 2008; abstract 134.

    Google Scholar 

  81. Renigunta A, Renigunta V, Saritas T, Decher N, Mutig K, Waldegger S. Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. J Biol Chem. 2011;286:2224–35.

    Article  CAS  PubMed  Google Scholar 

  82. Zivná M, Hůlková H, Matignon M, Hodanová K, Vylet’al P, Kalbácová M, Baresová V, Sikora J, Blazková H, Zivný J, Ivánek R, Stránecký V, Sovová J, Claes K, Lerut E, Fryns JP, Hart PS, Hart TC, Adams JN, Pawtowski A, Clemessy M, Gasc JM, Gubler MC, Antignac C, Elleder M, Kapp K, Grimbert P, Bleyer AJ, Kmoch S. Dominant renin gene mutations associated with early onset hyperuricemia, anemia and chronic kidney failure. Am J Hum Genet. 2009;85:204–13.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wolf MT, Mucha BE, Hennies HC, Attanasio M, Panther F, Zalewski I, Karle SM, Otto EA, Deltas CC, Fuchshuber A, Hildebrandt F. Medullary cystic kidney disease type 1: mutational analysis in 37 genes based on haplotype sharing. Hum Genet. 2006;119:649–5.

    Article  CAS  PubMed  Google Scholar 

  84. Hart TC, Gorry MC, Hart PS, Woodard AS, Shihabi Z, Sandhu J, Shirts B, Xu L, Zhu H, Barmada MM, Bleyer AJ. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet. 2002;39(12):882–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Scolari F, Caridi G, Rampoldi L, Tardanico R, Izzi C, Pirulli D, Amoroso A, Casari G, Ghiggeri GM. Uromodulin storage disease: clinical aspects and mechanisms. Am J Kidney Dis. 2004;44:987–99.

    Article  CAS  PubMed  Google Scholar 

  86. Bollée G, Dahan K, Flamant M, Morinière V, Pawtowski A, Heidet L, Lacombe D, Devuyst O, Pirson Y, Antignac C, Knebelmann B. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin J Am Soc Nephrol. 2011;6:2429–38.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rezende-Lima W, Parreira KS, Garcia-Gonzalez M, Riveira E, Banet JF, Lens XM. Homozygosity for uromodulin disorders: FJHN and MCKD-type 2. Kidney Int. 2004;66:558–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Heike Olbrich for preparation of tables and figures and her continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heymut Omran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

König, J., Ermisch-Omran, B., Omran, H. (2016). Nephronophthisis and Autosomal Dominant Interstitial Kidney Disease (ADIKD). In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics