Skip to main content
Log in

Glomerulocystic kidney disease

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Glomerulocystic disease is a rare renal cystic disease with a long descriptive history. Findings from recent studies have significantly advanced the pathophysiological understanding of the disease processes leading to this peculiar phenotype. Many genetic syndromes associated with glomerulocystic disease have had their respective proteins localized to primary cilia or centrosomes. Transcriptional control of renal developmental pathways is dysregulated in obstructive diseases that also lead to glomerulocystic disease, emphasizing the importance of transcriptional choreography between renal development and renal cystic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Roos A (1941) Polycystic kidney: report of a case studied by reconstruction. Am J Dis Child 61:116–127

    Google Scholar 

  2. Bialestock D (1960) Anaemia of renal origin, studied by microdissection of the kidney. Austr Annal Med 9:44–52

    CAS  Google Scholar 

  3. Baxter T (1965) Cysts arising in the renal corpuscle. Arch Dis Child 40:455–463

    Article  PubMed  CAS  Google Scholar 

  4. Taxy JB, Filmer RB (1976) Glomerulocystic kidney. Report of a case. Arch Pathol Lab Med 100:186–188

    PubMed  CAS  Google Scholar 

  5. Bernstein J (1993) Glomerulocystic kidney disease–nosological considerations. Pediatr Nephrol 7:464–470

    Article  PubMed  CAS  Google Scholar 

  6. Gupta K, Vankalakunti M, Sachdeva MU (2007) Glomerulocystic kidney disease and its rare associations: an autopsy report of two unrelated cases. Diagn Pathol 2:12

    Article  PubMed  Google Scholar 

  7. Sharp CK, Bergman SM, Stockwin JM, Robbin ML, Galliani C, Guay-Woodford LM (1997) Dominantly transmitted glomerulocystic kidney disease: a distinct genetic entity. J Am Soc Nephrol 8:77–84

    PubMed  CAS  Google Scholar 

  8. Flaherty L, Bryda EC, Collins D, Rudofsky U, Montogomery JC (1995) New mouse model for polycystic kidney disease with both recessive and dominant gene effects. Kidney Int 47:552–558

    Article  PubMed  CAS  Google Scholar 

  9. Lu W, Fan X, Basora N, Babakhanlou H, Law T, Rifai N, Harris PC, Perez-Atayde AR, Rennke HG, Zhou J (1999) Late onset of renal and hepatic cysts in Pkd1-targeted heterozygotes. Nat Genet 21:160–161

    Article  PubMed  CAS  Google Scholar 

  10. Lantinga-van Leeuwen IS, Leonhard WN, van der Wal A, Breuning MH, de Heer E, Peters DJ (2007) Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Hum Mol Genet 16:3188–3196

    Article  PubMed  CAS  Google Scholar 

  11. Patel V, Li L, Cobo-Stark P, Shao X, Somlo S, Lin F, Igarashi P (2008) Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet 17:1578–1590

    Article  PubMed  CAS  Google Scholar 

  12. Krous HF, Richie JP, Sellers B (1977) Glomerulocystic kidney. A hypothesis of origin and pathogenesis. Arch Pathol Lab Med 101:462–463

    PubMed  CAS  Google Scholar 

  13. Emma F, Muda AO, Rinaldi S, Boldrini R, Bosman C, Rizzoni G (2001) Acquired glomerulocystic kidney disease following hemolytic uremic syndrome. Pediatr Nephrol 16:557–560

    Article  PubMed  CAS  Google Scholar 

  14. Inglis K (1950) Neurilemmoblastomatosis. The influence of intrinsic factors in disease when development of the body is abnormal. Am J Pathol 26:521–549

    PubMed  CAS  Google Scholar 

  15. Bernstein J, Robbins TO (1991) Renal involvement in tuberous sclerosis. Ann N Y Acad Sci 615:36–49

    Article  PubMed  CAS  Google Scholar 

  16. Bernstein J (1993) Renal cystic disease in the tuberous sclerosis complex. Pediatr Nephrol 7:490–495

    Article  PubMed  CAS  Google Scholar 

  17. Bernstein J, Meyer R (1967) Parenchymal maldevelopment of the kidney. In: Kelley V (ed) Brennemann–Kelley practice of pediatrics. Harper, New York, pp 1–30

    Google Scholar 

  18. Potter E (1952) Pathology of the fetus and the newborn. Year Book Medical, Chicago

    Google Scholar 

  19. Ferrus A, Garcia-Bellido A (1976) Morphogenetic mutants detected in mitotic recombination clones. Nature 260:425–426

    Article  PubMed  CAS  Google Scholar 

  20. Siroky BJ, Czyzyk-Krzeska MF, Bissler JJ (2009) Renal involvement in tuberous sclerosis complex and von Hippel–Lindau disease: shared disease mechanisms? Nat Clin Pract Nephrol 5:143–156

    Article  PubMed  CAS  Google Scholar 

  21. Brook-Carter PT, Peral B, Ward CJ, Thompson P, Hughes J, Maheshwar MM, Nellist M, Gamble V, Harris PC, Sampson JR (1994) Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease-a contiguous gene syndrome. Nat Genet 8:328–332

    Article  PubMed  CAS  Google Scholar 

  22. Sampson JR, Harris PC (1994) The molecular genetics of tuberous sclerosis. Hum Mol Genet 3:1477–1480

    PubMed  CAS  Google Scholar 

  23. Gullerova M, Proudfoot NJ (2008) Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132:983–995

    Article  PubMed  CAS  Google Scholar 

  24. Benetti E, Caridi G, Vella MD, Rampoldi L, Ghiggeri GM, Artifoni L, Murer L (2009) Immature renal structures associated with a novel UMOD sequence variant. Am J Kidney Dis 53:327–331

    Article  PubMed  Google Scholar 

  25. Wolf MT, Mucha BE, Attanasio M, Zalewski I, Karle SM, Neumann HP, Rahman N, Bader B, Baldamus CA, Otto E, Witzgall R, Fuchshuber A, Hildebrandt F (2003) Mutations of the Uromodulin gene in MCKD type 2 patients cluster in exon 4, which encodes three EGF-like domains. Kidney Int 64:1580–1587

    Article  PubMed  CAS  Google Scholar 

  26. Bergmann C, Fliegauf M, Bruchle NO, Frank V, Olbrich H, Kirschner J, Schermer B, Schmedding I, Kispert A, Kranzlin B, Nurnberg G, Becker C, Grimm T, Girschick G, Lynch SA, Kelehan P, Senderek J, Neuhaus TJ, Stallmach T, Zentgraf H, Nurnberg P, Gretz N, Lo C, Lienkamp S, Schafer T, Walz G, Benzing T, Zerres K, Omran H (2008) Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet 82:959–970

    Article  PubMed  CAS  Google Scholar 

  27. Bingham C, Bulman MP, Ellard S, Allen LI, Lipkin GW, Hoff WG, Woolf AS, Rizzoni G, Novelli G, Nicholls AJ, Hattersley AT (2001) Mutations in the hepatocyte nuclear factor–1beta gene are associated with familial hypoplastic glomerulocystic kidney disease. Am J Hum Genet 68:219–224

    Article  PubMed  CAS  Google Scholar 

  28. Edghill EL, Bingham C, Slingerland AS, Minton JA, Noordam C, Ellard S, Hattersley AT (2006) Hepatocyte nuclear factor-1 beta mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1beta in human pancreatic development. Diabet Med 23:1301–1306

    Article  PubMed  CAS  Google Scholar 

  29. Calvet JP (2003) Ciliary signaling goes down the tubes. Nat Genet 33:113–114

    Article  PubMed  CAS  Google Scholar 

  30. Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST (2009) Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111:p39–p53

    Article  PubMed  CAS  Google Scholar 

  31. Gherman A, Davis EE, Katsanis N (2006) The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet 38:961–962

    Article  PubMed  CAS  Google Scholar 

  32. Mans DA, Voest EE, Giles RH (2008) All along the watchtower: is the cilium a tumor suppressor organelle? Biochim Biophys Acta 1786:114–125

    PubMed  CAS  Google Scholar 

  33. Siroky BJ, Ferguson WB, Fuson AL, Xie Y, Fintha A, Komlosi P, Yoder BK, Schwiebert EM, Guay-Woodford LM, Bell PD (2006) Loss of primary cilia results in deregulated and unabated apical calcium entry in ARPKD collecting duct cells. Am J Physiol Renal Physiol 290:F1320–F1328

    Article  PubMed  CAS  Google Scholar 

  34. Weimbs T (2007) Polycystic kidney disease and renal injury repair: common pathways, fluid flow, and the function of polycystin-1. Am J Physiol Renal Physiol 293:F1423–F1432

    Article  PubMed  CAS  Google Scholar 

  35. Yoder BK (2007) Role of primary cilia in the pathogenesis of polycystic kidney disease. J Am Soc Nephrol 18:1381–1388

    Article  PubMed  CAS  Google Scholar 

  36. Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, Qi Z, Ponniah S, Hong W, Hunziker W (2007) Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci USA 104:1631–1636

    Article  PubMed  CAS  Google Scholar 

  37. Kang HS, Beak JY, Kim YS, Herbert R, Jetten AM (2009) Glis3 is associated with primary cilia and Wwtr1/TAZ and implicated in polycystic kidney disease. Mol Cell Biol 29:2556–2569

    Article  PubMed  CAS  Google Scholar 

  38. Ansley SJ, Badano JL, Blacque OE, Hill J, Hoskins BE, Leitch CC, Kim JC, Ross AJ, Eichers ER, Teslovich TM, Mah AK, Johnsen RC, Cavender JC, Lewis RA, Leroux MR, Beales PL, Katsanis N (2003) Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 425:628–633

    Article  PubMed  CAS  Google Scholar 

  39. Piontek K, Menezes LF, Garcia-Gonzalez MA, Huso DL, Germino GG (2007) A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med 13:1490–1495

    Article  PubMed  CAS  Google Scholar 

  40. Hiesberger T, Bai Y, Shao X, McNally BT, Sinclair AM, Tian X, Somlo S, Igarashi P (2004) Mutation of hepatocyte nuclear factor-1beta inhibits Pkhd1 gene expression and produces renal cysts in mice. J Clin Invest 113:814–825

    PubMed  CAS  Google Scholar 

  41. Gresh L, Fischer E, Reimann A, Tanguy M, Garbay S, Shao X, Hiesberger T, Fiette L, Igarashi P, Yaniv M, Pontoglio M (2004) A transcriptional network in polycystic kidney disease. EMBO J 23:1657–1668

    Article  PubMed  CAS  Google Scholar 

  42. Haumaitre C, Fabre M, Cormier S, Baumann C, Delezoide AL, Cereghini S (2006) Severe pancreas hypoplasia and multicystic renal dysplasia in two human fetuses carrying novel HNF1beta/MODY5 mutations. Hum Mol Genet 15:2363–2375

    Article  PubMed  CAS  Google Scholar 

  43. Attar R, Quinn F, Winyard PJ, Mouriquand PD, Foxall P, Hanson MA, Woolf AS (1998) Short-term urinary flow impairment deregulates PAX2 and PCNA expression and cell survival in fetal sheep kidneys. Am J Pathol 152:1225–1235

    PubMed  CAS  Google Scholar 

  44. Dressler GR, Woolf AS (1999) Pax2 in development and renal disease. Int J Dev Biol 43:463–468

    PubMed  CAS  Google Scholar 

  45. Wang L, Weidenfeld R, Verghese E, Ricardo SD, Deane JA (2008) Alterations in renal cilium length during transient complete ureteral obstruction in the mouse. J Anat 213:79–85

    Article  PubMed  Google Scholar 

  46. Arhan E, Yusufoglu AM, Sayli TR (2009) Arc syndrome without arthrogryposis, with hip dislocation and renal glomerulocystic appearance: a case report. Eur J Pediatr 168:995–998

    Article  PubMed  Google Scholar 

  47. Langer LO Jr, Nishino R, Yamaguchi A, Ito Y, Ueke T, Togari H, Kato T, Opitz JM, Gilbert EF (1983) Brachymesomelia-renal syndrome. Am J Med Genet 15:57–65

    Article  PubMed  Google Scholar 

  48. Sibley RK, Mahan J, Mauer SM, Vernier RL (1985) A clinicopathologic study of forty-eight infants with nephrotic syndrome. Kidney Int 27:544–552

    Article  PubMed  CAS  Google Scholar 

  49. Ariel I, Wells TR, Landing BH, Singer DB (1991) The urinary system in Down syndrome: a study of 124 autopsy cases. Pediatr Pathol 11:879–888

    Article  PubMed  CAS  Google Scholar 

  50. Ivemark B, Oldfelt V, Zetterstrom R (1959) Familial dysplasia of kidneys, liver, and pancreas: a probably genetically determined syndrome. Acta Pediatr Scand 48:1–11

    Article  CAS  Google Scholar 

  51. Harkin JC, Gill WL, Shapira E (1986) Glutaric acidemia type II. Phenotypic findings and ultrastructural studies of brain and kidney. Arch Pathol Lab Med 110:399–401

    PubMed  CAS  Google Scholar 

  52. Marden PM, Walker WA (1966) A new generalized connective tissue syndrome. Am J Dis Child 112:225–228

    PubMed  CAS  Google Scholar 

  53. Tory K, Rousset-Rouviere C, Gubler MC, Moriniere V, Pawtowski A, Becker C, Guyot C, Gie S, Frishberg Y, Nivet H, Deschenes G, Cochat P, Gagnadoux MF, Saunier S, Antignac C, Salomon R (2009) Mutations of NPHP2 and NPHP3 in infantile nephronophthisis. Kidney Int 75:839–847

    Article  PubMed  CAS  Google Scholar 

  54. Feather SA, Winyard PJ, Dodd S, Woolf AS (1997) Oral-facial-digital syndrome type 1 is another dominant polycystic kidney disease: clinical, radiological and histopathological features of a new kindred. Nephrol Dial Transplant 12:1354–1361

    Article  PubMed  CAS  Google Scholar 

  55. Montemarano H, Bulas DI, Chandra R, Tifft C (1995) Prenatal diagnosis of glomerulocystic kidney disease in short-rib polydactyly syndrome type II, Majewski type. Pediatr Radiol 25:469–471

    Article  PubMed  CAS  Google Scholar 

  56. Kelley RI, Datta NS, Dobyns WB, Hajra AK, Moser AB, Noetzel MJ, Zackai EH, Moser HW (1986) Neonatal adrenoleukodystrophy: new cases, biochemical studies, and differentiation from Zellweger and related peroxisomal polydystrophy syndromes. Am J Med Genet 23:869–901

    Article  PubMed  CAS  Google Scholar 

  57. Watnick T, Germino G (2003) From cilia to cyst. Nat Genet 34:355–356

    Article  PubMed  CAS  Google Scholar 

  58. Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham JM, Bacallao R, Ishibashi M, Milliner DS, Torres VE, Harris PC (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30:259–269

    Article  PubMed  Google Scholar 

  59. Onuchic LF, Furu L, Nagasawa Y, Hou X, Eggermann T, Ren Z, Bergmann C, Senderek J, Esquivel E, Zeltner R, Rudnik-Schoneborn S, Mrug M, Sweeney W, Avner ED, Zerres K, Guay-Woodford LM, Somlo S, Germino GG (2002) PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet 70:1305–1317

    Article  PubMed  CAS  Google Scholar 

  60. Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, Rix S, Pearson CG, Kai M, Hartley J, Johnson C, Irving M, Elcioglu N, Winey M, Tada M, Scambler PJ (2007) IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet 39:727–729

    Article  PubMed  CAS  Google Scholar 

  61. Romio L, Wright V, Price K, Winyard PJ, Donnai D, Porteous ME, Franco B, Giorgio G, Malcolm S, Woolf AS, Feather SA (2003) OFD1, the gene mutated in oral-facial-digital syndrome type 1, is expressed in the metanephros and in human embryonic renal mesenchymal cells. J Am Soc Nephrol 14:680–689

    Article  PubMed  CAS  Google Scholar 

  62. Khaddour R, Smith U, Baala L, Martinovic J, Clavering D, Shaffiq R, Ozilou C, Cullinane A, Kyttala M, Shalev S, Audollent S, d’Humieres C, Kadhom N, Esculpavit C, Viot G, Boone C, Oien C, Encha-Razavi F, Batman PA, Bennett CP, Woods CG, Roume J, Lyonnet S, Genin E, Le Merrer M, Munnich A, Gubler MC, Cox P, Macdonald F, Vekemans M, Johnson CA, Attie-Bitach T (2007) Spectrum of MKS1 and MKS3 mutations in Meckel syndrome: a genotype-phenotype correlation. Mutation in brief #960. Online. Hum Mutat 28:523–524

    Article  PubMed  Google Scholar 

  63. Hildebrandt F, Attanasio M, Otto E (2009) Nephronophthisis: disease mechanisms of a ciliopathy. J Am Soc Nephrol 20:23–35

    Article  PubMed  CAS  Google Scholar 

  64. Kleymenova E, Ibraghimov-Beskrovnaya O, Kugoh H, Everitt J, Xu H, Kiguchi K, Landes G, Harris P, Walker C (2001) Tuberin-dependent membrane localization of polycystin-1: a functional link between polycystic kidney disease and the TSC2 tumor suppressor gene. Mol Cell 7:823–832

    Article  PubMed  CAS  Google Scholar 

  65. Dibella LM, Park A, Sun Z (2009) Zebrafish Tsc1 reveals functional interactions between the cilium and the TOR pathway. Hum Mol Genet 18:595–606

    Article  PubMed  CAS  Google Scholar 

  66. Weimbs T (2006) Regulation of mTOR by polycystin-1: is polycystic kidney disease a case of futile repair? Cell Cycle 5:2425–2429

    PubMed  CAS  Google Scholar 

  67. Astrinidis A, Senapedis W, Henske EP (2006) Hamartin, the tuberous sclerosis complex 1 gene product, interacts with polo-like kinase 1 in a phosphorylation-dependent manner. Hum Mol Genet 15:287–297

    Article  PubMed  CAS  Google Scholar 

  68. Pritchard L, Sloane-Stanley JA, Sharpe JA, Aspinwall R, Lu W, Buckle V, Strmecki L, Walker D, Ward CJ, Alpers CE, Zhou J, Wood WG, Harris PC (2000) A human PKD1 transgene generates functional polycystin-1 in mice and is associated with a cystic phenotype. Hum Mol Genet 9:2617–2627

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support for this manuscript was obtained from the Department of Defense (JJB) and the Polycystic Kidney Foundation (BJS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Bissler.

Additional information

Answers:

1. d.

2. e

3. d

4. e

5. d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bissler, J.J., Siroky, B.J. & Yin, H. Glomerulocystic kidney disease. Pediatr Nephrol 25, 2049–2059 (2010). https://doi.org/10.1007/s00467-009-1416-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-009-1416-2

Keywords

Navigation