Skip to main content

Quantal Density Functional Theory

  • Chapter
  • First Online:
Quantal Density Functional Theory
  • 1234 Accesses

Abstract

Quantal density functional theory (Q–DFT) is a physical local effective potential theory of electronic structure of both ground and excited states. It constitutes the mapping from any state of an interacting system of N electrons in a time-dependent external field as described by Schrödinger theory to one of noninteracting fermions in the same external field and possessing the same quantum-mechanical properties of the basic variables. Time-independent Q–DFT constitutes a special case. The Q–DFT mapping can be to any arbitrary state of the model system. Q–DFT is based on the ‘Quantal Newtonian’ second and first laws of both the interacting and noninteracting systems. As such it is a description in terms of ‘classical’ fields derived from quantal sources as experienced by each model fermion. The internal field components are separately representative of electron correlations due to the Pauli Exclusion Principle, Coulomb repulsion, kinetic effects and the density. Thus, as opposed to Schrödinger theory, within Q–DFT, the separate contributions to the total energy and local potential due to the Pauli principle, Coulomb repulsion, and the correlation contribution to the kinetic energy—the Correlation-Kinetic effects—are explicitly defined in terms of fields representative of these correlations. The local potential incorporating all the many-body effects is the work done in the force of a conservative effective field which is the sum of these fields. The many-body components of the energy are expressed in integral virial form in terms of the individual fields representative of the different electron correlations. Various sum rules for the model system such as the Integral Virial Theorem, Ehrenfest’s Theorem, the Zero Force and the Torque Sum Rule are derived. Q–DFT is explicated by application to both a ground and excited state of a model system in the low electron-correlation regime, and to a ground state in the Wigner high-electron correlation regime. A new characterization of the Wigner regime based on the newly discovered significance of Correlation-Kinetic effects is proposed. The multiplicity of potentials as obtained via Q–DFT which can generate the same basic variables, and the significance of Correlation-Kinetic effects in such mappings, is discussed. The Q–DFT of degenerate states is described, as is the Q–DFT of Hartree and Hartree-Fock theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Sahni, Quantal Density Functional Theory, (Springer-Verlag, Berlin, Heidelberg, 2004) (Referred to as QDFT1)

    Google Scholar 

  2. V. Sahni, Quantal Density Functional Theory II: Approximation Methods and Applications, (Springer-Verlag, Berlin, Heidelberg, 2010) (Referred to as QDFT2)

    Google Scholar 

  3. V. Sahni, Phys. Rev. A 55, 1846 (1997)

    Article  ADS  Google Scholar 

  4. V. Sahni, Top. Curr. Chem. 182, 1 (1996)

    Article  Google Scholar 

  5. Z. Qian, V. Sahni, Phys. Rev. A 57, 2527 (1998)

    Article  ADS  Google Scholar 

  6. Z. Qian, V. Sahni, Phys. Lett. A 247, 303 (1998)

    Article  ADS  Google Scholar 

  7. Z. Qian, V. Sahni, Phys. Lett. A 248, 393 (1998)

    Article  ADS  Google Scholar 

  8. Z. Qian, V. Sahni, Phys. Rev. B 62, 16364 (2000)

    Google Scholar 

  9. Z. Qian, V. Sahni, Int. J. Quantum Chem. 78, 341 (2000)

    Article  Google Scholar 

  10. V. Sahni, L. Massa, R. Singh, M. Slamet, Phys. Rev. Lett. 87, 113002 (2001)

    Google Scholar 

  11. M. Slamet, V. Sahni, Int. J. Quantum Chem. 85, 436 (2001)

    Article  Google Scholar 

  12. Z. Qian, V. Sahni, Phys. Rev. A 63, 042 508 (2001)

    Google Scholar 

  13. V. Sahni, in Electron Correlations and Materials Properties 2, ed. by A. Gonis, N. Kioussis, M. Ciftan (Kluwer Academic/Plenum Publishers, New York, 2002)

    Google Scholar 

  14. V. Sahni, X.-Y. Pan, Phys. Rev. Lett. 90, 123001 (2003)

    Google Scholar 

  15. M. Slamet, R. Singh, L. Massa, V. Sahni, Phys. Rev. A 68, 042504 (2003)

    Article  ADS  Google Scholar 

  16. V. Sahni, M. Slamet, Int. J. Quantum Chem. 100, 858 (2004)

    Article  Google Scholar 

  17. V. Sahni, M. Slamet, Int. J. Quantum Chem. 106, 3087 (2006)

    Article  ADS  Google Scholar 

  18. V. Sahni, M. Slamet, X.-Y. Pan, J. Chem. Phys. 126, 204106 (2007)

    Article  ADS  Google Scholar 

  19. X.-Y. Pan, V. Sahni, Phys. Rev. A 80, 022506 (2009)

    Article  ADS  Google Scholar 

  20. V. Sahni, in Proceedings of the 26th International Colloquium on Group Theoretical Methods in Physics, ed. by J.L. Birman, S. Catto, B. Nicolescu (Canopus Publishers, 2009)

    Google Scholar 

  21. T. Yang, X.-Y. Pan, V. Sahni, Phys. Rev. A 83, 042518 (2011)

    Article  ADS  Google Scholar 

  22. J.C. Slater, Phys. Rev. 81, 385 (1951)

    Article  ADS  Google Scholar 

  23. J.C. Slater, T.M. Wilson, J.H. Wood, Phys. Rev. 179, 28 (1969)

    Article  ADS  Google Scholar 

  24. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  25. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  26. W. Kohn, in Highlights of Condensed Matter Theory, ed. by F. Bassani, F. Fumi, M.P. Tosi (North Holland, Amsterdam, 1985), p. 1

    Google Scholar 

  27. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  28. E.K.U. Gross, J.F. Dobson, M. Petersilka, Top. Curr. Chem. 181, 81 (1996)

    Article  Google Scholar 

  29. C.A. Ullrich, Time-dependent Density Functional Theory (Oxford University Press, Oxford, 2012)

    MATH  Google Scholar 

  30. O. Gunnarsson, B. Lundqvist, Phys. Rev. B 13, 4724 (1976)

    Article  Google Scholar 

  31. Y.-Q. Li, X.-Y. Pan, B. Li, V. Sahni, Phys. Rev. A 85, 032517 (2012)

    Article  ADS  Google Scholar 

  32. R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999)

    Article  ADS  Google Scholar 

  33. J. Schirmer, A. Dreuw, Phys. Rev. A 75, 022513 (2007)

    Article  ADS  Google Scholar 

  34. N.T. Maitra, R. van Leeuwen, K. Burke, Phys. Rev. A 78, 056501 (2008)

    Article  ADS  Google Scholar 

  35. J. Schirmer, A. Dreuw, Phys. Rev. A 78, 056502 (2008)

    Article  ADS  Google Scholar 

  36. X.-Y. Pan, V. Sahni, Int. J. Quantum Chem. 108, 2756 (2008)

    Article  ADS  Google Scholar 

  37. B.-X. Xu, A.K. Rajagopal, Phys. Rev. A 31, 2682 (1985)

    Article  ADS  Google Scholar 

  38. A.K. Dhara, S.K. Ghosh, Phys. Rev. A 35, 442 (1987)

    Article  ADS  Google Scholar 

  39. V. Sahni, X.-Y. Pan, T. Yang (manuscript in preparation)

    Google Scholar 

  40. M.K. Harbola, V. Sahni, J. Chem. Educ. 70, 920 (1993)

    Article  Google Scholar 

  41. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)

    Article  ADS  Google Scholar 

  42. M. Levy, J.P. Perdew, V. Sahni, Phys. Rev. A 30, 2745 (1984)

    Article  ADS  Google Scholar 

  43. C.-O. Almbladh, U. von Barth, Phys. Rev. B 31, 3231 (1985)

    Article  ADS  Google Scholar 

  44. D.R. Hartree, Proc. Cambridge Philos. Soc. 24, 39 (1928); 24, 111 (1928); 24, 426 (1928)

    Google Scholar 

  45. D.R. Hartree, The Calculation of Atomic Structures (John Wiley and Sons, Inc., New York, 1957)

    MATH  Google Scholar 

  46. V. Fock, Z. Phys. 61, 126 (1930)

    Article  ADS  Google Scholar 

  47. J.C. Slater, Phys. Rev. 35, 210 (1930)

    Article  ADS  Google Scholar 

  48. R. Gaudoin, K. Burke, Phys. Rev. Lett. 93, 173001 (2004)

    Article  ADS  Google Scholar 

  49. P. Samal, M.K. Harbola, A. Holas, Chem. Phys. Lett. 419, 217 (2005)

    Article  ADS  Google Scholar 

  50. M. Levy, A. Nagy, Phys. Rev. Lett. 83, 4361 (1999)

    Article  ADS  Google Scholar 

  51. C.A. Ullrich, W. Kohn, Phys. Rev. Lett. 87, 093001 (2001)

    Article  ADS  Google Scholar 

  52. C.A. Ullrich, W. Kohn, Phys. Rev. Lett. 89, 156401 (2002)

    Article  ADS  Google Scholar 

  53. A. Nagy, M. Levy, Phys. Rev. A 63, 052502 (2001)

    Article  ADS  Google Scholar 

  54. E.P. Wigner, Phys. Rev. 46, 1002 (1934)

    Article  ADS  Google Scholar 

  55. E.P. Wigner, Trans. Faraday Soc. (London) 34, 678 (1938)

    Article  Google Scholar 

  56. YuP Monrkha, V.E. Syvokon, Low. Temp. Phys. 38, 1067 (2012)

    Article  ADS  Google Scholar 

  57. A.V. Chaplik, Zh. Eksp. Teor. Fiz. 62, 746 (1972); Sov. Phys. JETP 35, 395 (1972)

    Google Scholar 

  58. R.S. Crandall, R. Williams, Phys. Lett. A 34, 404 (1971)

    Article  ADS  Google Scholar 

  59. R.S. Crandall, Phys. Rev. A 8, 2136 (1973)

    Article  ADS  Google Scholar 

  60. D. Achan, L. Massa, V. Sahni, Comp. Theor. Chem. 1035, 14 (2014)

    Article  Google Scholar 

  61. D. Achan, L. Massa, V. Sahni, Phys. Rev. A 90, 022502 (2014)

    Article  ADS  Google Scholar 

  62. M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979)

    Article  ADS  Google Scholar 

  63. P.W. Payne, J. Chem. Phys. 71, 190 (1979)

    Article  Google Scholar 

  64. A. Holas, N.H. March, Y. Takahashi, C. Zhang, Phys. Rev. A 48, 2708 (1993)

    Article  ADS  Google Scholar 

  65. B.L. Moiseiwitsch, Variational Principles (John Wiley and Sons Ltd, London, 1966)

    MATH  Google Scholar 

  66. J. Bardeen, Phys. Rev. 49, 653 (1936). (See footnote 18)

    Google Scholar 

  67. T. Koopmans, Physica 1, 104 (1933)

    Article  ADS  Google Scholar 

  68. V. Sahni, C.Q. Ma, Phys. Rev. B 22, 5987 (1980)

    Article  ADS  Google Scholar 

  69. V. Sahni, Y. Li, M.K. Harbola, Phys. Rev. A 45, 1434 (1992)

    Article  ADS  Google Scholar 

  70. V. Sahni, Int. J. Quantum Chem. 56, 265 (1995)

    Article  Google Scholar 

  71. N.C. Handy, M.T. Marron, H.J. Silverstone, Phys. Rev. 180, 45 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  72. L. Brillouin, Actualités sci. et ind. 71 (1933); 159 (1934); 160 (1934)

    Google Scholar 

  73. C. Møller, M.S. Plesset, Phys. Rev. 46, 618 (1934)

    Article  ADS  Google Scholar 

  74. J. Goodisman, W. Klemperer, J. Chem. Phys. 38, 721 (1963)

    Article  ADS  Google Scholar 

  75. A. Holas, N.H. March, Top. Curr. Chem. 180, 57 (1996)

    Article  Google Scholar 

  76. E.K.U. Gross, E. Runge, O. Heinonen, Many Particle Theory (IOP Publishing, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viraht Sahni .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sahni, V. (2016). Quantal Density Functional Theory. In: Quantal Density Functional Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49842-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49842-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49840-8

  • Online ISBN: 978-3-662-49842-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics